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Abstract
There are several prominent duality results in pointfree topology. Hofmann–Lawson duality
establishes that the category of continuous frames is dually equivalent to the category of
locally compact sober spaces. This restricts to a dual equivalence between the categories of
stably continuous frames and stably locally compact spaces, which further restricts to Isbell
duality between the categories of compact regular frames and compact Hausdorff spaces.
We show how to derive these dualities from Priestley duality for distributive lattices, thus
shedding new light on these classic results.
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Compact Hausdorff space · Priestley duality
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1 Introduction

In pointfree topology there is a well-known dual adjunction between the category Top of
topological spaces and continuous maps and the category Frm of frames and frame homo-
morphisms (see, e.g., [15]). Let Sob be the full subcategory of Top consisting of sober
spaces and SFrm the full subcategory of Frm consisting of spatial frames. The dual adjunc-
tion between Top and Frm then restricts to a dual equivalence between Sob and SFrm (see,
e.g., [30, Sec. II–1]). Further restrictions yield the following classic results:
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• Hofmann–Lawsonduality between the categoryConFrmof continuous frames andproper
frame homomorphisms and the category LKSob of locally compact sober spaces and
proper maps [26].

• A dual equivalence between the full subcategory StCFrm of ConFrm consisting of stably
continuous frames and the full subcategory StLKSp of LKSob consisting of stably locally
compact spaces, which further restricts to a dual equivalence between the full subcate-
gories StKFrm of stably compact frames and StKSp of stably compact spaces [5, 23, 29,
39].

• Isbell duality between the full subcategory KRFrm of Frm consisting of compact regular
frames and the full subcategory KHaus of Top consisting of compact Hausdorff spaces
[28].

Note that every frame homomorphism between compact regular frames is proper, and
hence KRFrm is a full subcategory of StKFrm. Similarly, KHaus is a full subcategory of
StKSp. We thus arrive at the diagram in Fig. 1, where a pair of squiggly arrows ( ��) represents
a dual adjunction and a squiggly left-right arrow (�) a dual equivalence. Also, C ≤ D stands
for “C is a full subcategory of D” and C � D for “C is a non-full subcategory of D.”

It is our aim to provide a different perspective on these dualities by utilizing Priestley
duality [33, 34], which establishes a dual equivalence between the categoriesDLat of bounded
distributive lattices and bounded lattice homomorphisms and Pries of Priestley spaces and
Priestley morphisms.

It iswell known (see, e.g., [30, Sec. II–3]) thatDLat is equivalent to the categoryCohFrm of
coherent frames, which is dually equivalent to the category Spec of spectral spaces.We recall
that a stably compact frame L is coherent if compact elements join-generate L , and a stably
compact space X is spectral if compact opens form a basis for X . Therefore, CohFrm is a full
subcategory of StKFrm and Spec is a full subcategory of StKSp. By [13], Spec is isomorphic
to Pries. Thus, Priestley duality can be derived from the dual equivalence of CohFrm and
Spec.

On the other hand, since frames are special distributive lattices, they can be studied using
the machinery of Priestley duality. This line of research was initiated by Pultr and Sichler
[36] who showed that Priestley duality restricts to a dual equivalence between Frm and
the category LPries of what we call L-spaces and L-morphisms (see Sect. 3). It was further
developed in [3, 4, 9, 10, 37] where various properties of frames were characterized in the
language of their Priestley duals. An alternative approach, using Spec instead of Pries, was
investigated in [14, 38].

The exploration of Priestley spaces of frames has numerous applications, not only in
pointfree topology, but in other areas as well. For example, nuclei play an important role
in pointfree topology as they are kernels of frame homomorphisms (see, e.g., [32, p. 31]).

Fig. 1 Correspondence between
various categories of frames and
spaces

Frm Top

SFrm Sob

ConFrm LKSob

StCFrm StLKSp

StKFrm StKSp

KRFrm KHaus
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But they also arise in logic as they model the so-called lax modality [20, 24]. The resulting
intuitionistic modal logic has various applications [1, 2, 19, 21, 25]. As was demonstrated in
[11], nuclei also provide a unified semantic hierarchy for intuitionistic logic. It turns out that
nuclei have a rather natural description in the language of Priestley spaces, which has resulted
in numerous insights in understanding the complicated structure of the frame of nuclei of a
given frame (see, e.g., [3, 4, 8, 10, 37]).

The goal of this paper is to continue the study of frames by means of their Priest-
ley spaces. In particular, we provide dual descriptions of the categories SFrm, ConFrm,
StCFrm, StKFrm, and KRFrm in the language of Priestley spaces. On the one hand, this yields
an alternative proof of the dual equivalences mentioned at the beginning of the introduction,
thus providing a new insight into these classic results in pointfree topology from the per-
spective of Priestley duality. On the other hand, it gives rise to new subcategories of Priestley
spaces that are equivalent to such important categories of topological spaces as Sob, LKSob,
StLKSp, StKSp, and KHaus. It is our belief that results of this nature can provide further insight
and cross-fertilization between these beautiful branches of mathematics.

The paper is organized as follows. Section2 introduces the categories of frames and spaces
of interest, and presents the relevant dualities in more detail. Section3 discusses Priestley
duality and its restriction to frames. Section4 characterizes spatial frames in the language of
Priestley duality and connects the associated Priestley spaces with sober spaces. Section5
further restricts this correspondence to continuous frames, their associated Priestley spaces,
and locally compact sober spaces. This yields a new proof of Hofmann–Lawson duality. In
Sect. 6 we derive the duality between stably continuous frames and stably locally compact
spaces by describing stability in the language of Priestley spaces. This also gives a new proof
of the duality between stably compact frames and stably compact spaces. Finally, Sect. 7
describes regularity in the language of Priestley spaces, thus providing an alternative proof
of Isbell duality.

2 Frames and Spaces

We recall (see, e.g., [32, p. 10]) that a frame is a complete lattice L satisfying the join-infinite
distributive law

a ∧
∨

S =
∨

{a ∧ s | s ∈ S}
for every a ∈ L and S ⊆ L . A frame homomorphism is a map between frames that preserves
finitemeets and arbitrary joins. Let Frm be the category of frames and frame homomorphisms.

A filter F of a frame L is completely prime if
∨

S ∈ F implies S∩ F �= ∅ and Scott-open
if

∨
S ∈ F implies

∨
T ∈ F for some finite T ⊆ S. Clearly each completely prime filter is

Scott-open. In fact, Scott-open filters are exactly the intersections of completely prime filters
(see, e.g., [40, p. 101]).

A frame L is spatial if completely prime filters separate elements of L; that is, a � b in
L implies that there is a completely prime filter F with a ∈ F and b /∈ F . Equivalently, L is
spatial iff Scott-open filters separate elements of L . It is well known (see, e.g., [32, p. 18])
that L is spatial iff L is isomorphic to the frame O(X) of open sets of a topological space X
(hence the name). Let SFrm be the full subcategory of Frm consisting of spatial frames.

There are two relations on frames that are of particular importance to us. We recall that if
L is a frame and a ∈ L , then the pseudocomplement of a is a∗ = ∨{x ∈ L | a ∧ x = 0}.
Definition 2.1 Let L be a frame and a, b ∈ L .
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(1) (see, e.g., [22, p. 49]) We say that a is way below b and write a 	 b if for each S ⊆ L ,
from b ≤ ∨

S it follows that a ≤ ∨
T for some finite T ⊆ S.

(2) (see, e.g., [30, p. 80]) We say that a is well inside b and write a ≺ b if a∗ ∨ b = 1.

A frame L is continuous if

a =
∨

{b ∈ L | b 	 a}
and L is regular if

a =
∨

{b ∈ L | b ≺ a}
for all a ∈ L .

Each frame homomorphism h : L → M preserves≺ (that is, a ≺ b implies h(a) ≺ h(b)),
but may not preserve 	. We call h proper provided h preserves 	 (that is, a 	 b implies
h(a) 	 h(b)).

Definition 2.2 Let ConFrm be the category of continuous frames and proper frame homo-
morphisms between them.

We call an element a of a frame L compact if a 	 a and the frame L compact if the top
element 1 is compact. We also call	 stable if a 	 b, c implies a 	 b∧c for all a, b, c ∈ L .

Definition 2.3 (1) (see, e.g., [22, p. 488]) A frame L is stably continuous if L is continuous
and 	 is stable. Let StCFrm be the full subcategory of ConFrm consisting of stably
continuous frames.

(2) (see, e.g., [22, p. 488]) A frame L is stably compact if L is compact and stably continuous.
Let StKFrm be the full subcategory of StCFrm consisting of stably compact frames.

(3) (see, e.g., [32, p. 133]) Let KRFrm be the full subcategory of Frm consisting of compact
regular frames.

We note that if L is compact, then a ≺ b implies a 	 b, and if L is regular, then a 	 b
implies a ≺ b (see, e.g., [32, Lem. VII–5.2.1]). Therefore, if L is compact regular, then the
way below and well inside relations on L coincide. Thus, since a ≺ b, c implies a ≺ b ∧ c,
every compact regular frame is stably compact. Consequently, KRFrm is a full subcategory
of StKFrm.

Table 1 contains the categories of frames that we will be concerned with in this paper. We
next turn our attention to the categories of spaces that correspond to the categories of frames
in Table 1. The definitions that follow are well known; see, e.g., [22].

For a partially ordered set P and S ⊆ P , we write

↑S = {x ∈ P | s ≤ x for some s ∈ S} and ↓S = {x ∈ P | x ≤ s for some s ∈ S}.
Then S is an upset if S = ↑S, S is a downset if S = ↓S, and S is a biset if it is both an upset
and a downset. For a singleton S = {x} we write ↑x for ↑S and ↓x for ↓S.

Let X be a topological space. We recall that a closed subset A of X is irreducible if
A cannot be written as a union of two closed proper subsets, and that X is sober if each
irreducible subset of X is the closure of a unique point in X . In particular, every sober space
is T0.

The space X is locally compact if for each open set U and x ∈ U there is an open set
V and a compact set K such that x ∈ V ⊆ K ⊆ U . A subset of X is saturated if it is an
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Table 1 Categories of frames

Category Objects Morphisms

Frm Frames Frame homomorphisms

SFrm Spatial frames Frame homomorphisms

ConFrm Continuous frames Proper frame homomorphisms

StCFrm Stably continuous frames Proper frame homomorphisms

StKFrm Stably compact frames Proper frame homomorphisms

KRFrm Compact regular frames Frame homomorphisms

intersection of open sets, and X is coherent if the intersection of two compact saturated sets
is again compact.

The specialization preorder ≤ on X is defined by x ≤ y iff x ∈ cl({y}), where cl is
topological closure. Observe that saturated sets of X are exactly upsets in the specialization
preorder, which is a partial order iff X is a T0-space.

Definition 2.4 (1) Let Top be the category of topological spaces and continuous maps, and
let Sob be the full subcategory of Top consisting of sober spaces.

(2) A continuous map f : X → Y between topological spaces is proper if

(i) ↓ f (A) is closed for each closed set A ⊆ X , where ↓ is the downset in the special-
ization preorder on X .

(ii) f −1(B) is compact for each compact saturated set B ⊆ Y .

(3) Let LKSob be the category of locally compact sober spaces and proper maps between
them.

(4) We call X stably locally compact if X is locally compact, sober, and coherent. Let StLKSp
be the full subcategory of LKSob consisting of stably locally compact spaces.

(5) We call X stably compact if X is compact and stably locally compact. Let StKSp be the
full subcategory of StLKSp consisting of stably compact spaces.

(6) Let KHaus be the full subcategory of Sob consisting of compact Hausdorff spaces.

Remark 2.5 (1) By [22, Lem. VI–6.21], if X is sober and Y is locally compact, then (i)
follows from (ii) in Definition 2.4(2).

(2) In compact Hausdorff spaces, the specialization order is the identity. Hence, compact
saturated sets are simply closed sets. Therefore, since every compact Hausdorff space is
sober and locally compact, KHaus is a full subcategory of StKSp.

Table2 contains the categories of topological spaces that we are interested in. There is a
well-known dual adjunction (O, pt) between Top and Frm (see, e.g., [15]). The contravariant
functors O : Top → Frm and pt : Frm → Top are constructed as follows. The functor O
maps a topological space X to its frame of open sets, and a continuous map f : X → Y
to f −1 : O(Y ) → O(X). The functor pt maps a frame L to its space of points, where
a point is a completely prime filter of L . The topology on pt(L) is the range of the map
ζ : L → ℘(pt(L)) given by ζ(a) = {x ∈ pt(L) | a ∈ x}, where℘(X) denotes the powerset
of a set X . A frame homomorphism h : L → M is mapped to h−1 : pt(M) → pt(L).

Restricting the range of these functors yields the following well-known duality results:

Theorem 2.6 (1) SFrm is dually equivalent to Sob.
(2) (Hofmann–Lawson duality) ConFrm is dually equivalent to LKSob.
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Table 2 Categories of spaces Category Objects Morphisms

Top Topological spaces Continuous maps

Sob Sober spaces Continuous maps

LKSob Locally compact sober spaces Proper maps

StLKSp Stably locally compact spaces Proper maps

StKSp Stably compact spaces Proper maps

KHaus Compact Hausdorff spaces Continuous maps

(3) StCFrm is dually equivalent to StLKSp.
(4) StKFrm is dually equivalent to StKSp.
(5) (Isbell duality) KRFrm is dually equivalent to KHaus.

For Theorem 2.6(1) see, e.g., [30, Sec. II–1]. Hofmann–Lawson duality was established
in [26] (see also [22, Prop. V–5.20]). Theorems 2.6(3) and 2.6(4) go back to [5, 23, 29, 39]
(see also [22, Thm. VI–7.4]). Isbell duality was established in [28] (see also [6] and [30,
Sec. VII–4]). We thus obtain the diagram in Fig. 1.

3 Priestley Duality for Frames

As is customary, we call a subset of a topological space X clopen if it is both closed and open.
Then X is zero-dimensional if it has a basis of clopen sets. Stone spaces are zero-dimensional
compact Hausdorff spaces.

Definition 3.1 A Priestley space is a pair (X ,≤) where X is a compact space and ≤ is a
partial order on X satisfying the Priestley separation axiom:

If x � y, then there is a clopen upset U with x ∈ U and y /∈ U .

For a Priestley space (X ,≤) we simply write X and note that every Priestley space is a
Stone space.

A Priestley morphism is a continuous map f : X → Y between Priestley spaces that
is order-preserving. Let Pries be the category of Priestley spaces and Priestley morphisms.
Let also DLat by the category of bounded distributive lattices and bounded lattice homomor-
phisms.

Theorem 3.2 (Priestley duality) Pries is dually equivalent to DLat.

Remark 3.3 (1) For a bounded distributive lattice D, the Priestley space XD of D is given
by the set of prime filters of D ordered by inclusion and topologized by the subbasis

{ϕ(a) | a ∈ D} ∪ {ϕ(a)c | a ∈ D},
where ϕ : D → ℘(XD) is the Stone map given by ϕ(a) = {x ∈ XD | a ∈ x} for each
a ∈ D.

(2) The contravariant functors X : DLat → Pries and D : Pries → DLat establishing
Priestley duality are described as follows. The functor X sends a bounded distributive
lattice D to the Priestley space XD of D and a bounded lattice homomorphism h : D → E
to the Priestley morphism h−1 : XE → XD . The functor D sends a Priestley space X
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to the bounded distributive lattice ClopUp(X) of clopen upsets of X and a Priestley
morphism f : X → Y to the bounded lattice homomorphism f −1 : ClopUp(Y ) →
ClopUp(X). The natural isomorphisms are given by ϕ : D → DX D defined above and
ε : X → X DX defined by ε(x) = {U ∈ ClopUp(X) | x ∈ U} for each x ∈ X .

Since frames are special bounded distributive lattices, we can restrict Priestley duality to
obtain a category that is dual to Frm. It is well known that a bounded distributive lattice is
a frame iff it is a complete Heyting algebra (see, e.g., [18, Prop. 1.5.4]). Therefore, we can
describe the dual category of Frm using Esakia duality [17]. We recall that a Priestley space
is an Esakia space if U clopen implies that ↓U is clopen. The following are well-known
properties of Priestley and Esakia spaces that we will use frequently. For a subset F of a
poset X , we write min(F) and max(F) for the sets of minimal and maximal elements of F ,
respectively.

Lemma 3.4 (see, e.g., [18, 35]) Let X be a Priestley space.

(1) The collection of clopen upsets and clopen downsets of X forms a subbasis for X.
(2) Every open upset/downset is a union of clopen upsets/downsets.
(3) Every closed upset/downset is an intersection of clopen upsets/downsets.
(4) If F ⊆ X is closed, then both ↑F and ↓F are closed.
(5) If F is a closed set, then min(F) and max(F) are nonempty. In fact, for every x ∈ F

there exist y ∈ min(F) and z ∈ max(F) such that y ≤ x ≤ z. Consequently, if F is a
closed upset, then F = ↑min(F) and if F is a closed downset, then F = ↓max(F).

(6) If P is a prime filter of ClopUp(X), then
⋂P = ↑x for a unique x ∈ X.

Suppose additionally that X is an Esakia space.

(7) cl↑F = ↑ cl F. Consequently, the closure of an upset is an upset and the interior of a
downset is a downset.

Let D ∈ DLat and XD be its Priestley space. Then D is a Heyting algebra iff XD is
an Esakia space [17], and D is a complete Heyting algebra iff XD is an extremally order-
disconnectedEsakia space [7, Thm. 2.4(2)], wherewe recall that an Esakia space is extremally
order-disconnected if clU is open for every open upset U . We thus arrive at the following
well-known result. It was first proved in [36, Thm. 2.3] without using Esakia duality. For the
formulation below, see [3, Thm. 3.7].

Theorem 3.5 Let D be a bounded distributive lattice and XD its Priestley space. Then D is
a frame iff XD is an extremally order-disconnected Esakia space.

The following well-known fact (see, e.g., [7, Lem. 2.3]) will be used throughout.

Lemma 3.6 For a frame L, its Priestley space XL , and S ⊆ L, we have

ϕ
(∨

S
)

= cl
(⋃

{ϕ(s) | s ∈ S}
)

.

Frame homomorphisms are dually characterized by Priestley morphisms that satisfy the
following additional condition.

Lemma 3.7 ([36, Sec. 2.5]) Let L, M ∈ Frm, h : L → M be a bounded lattice homomor-
phism, and f = X (h). Then h is a frame homomorphism iff f −1 clU = cl f −1(U ) for all
open upsets U of XL .
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Since frames are also known as locales (see, e.g., [32]), we introduce the following ter-
minology.

Definition 3.8 (L-spaces)

(1) A localic space or simply an L-space is an extremally order-disconnected Esakia space.
(2) An L-morphism is a Priestley morphism f : X → Y between L-spaces such that

f −1 clU = cl f −1(U ) for all open upsets U of Y .
(3) Let LPries be the category of L-spaces and L-morphisms.

Theorem 3.9 (Pultr–Sichler [36, Cor. 2.5]) Frm is dually equivalent to LPries .

Remark 3.10 The functors establishing Pultr–Sichler duality are the restrictions of the func-
torsX : DLat → Pries andD : Pries → DLat establishing Priestley duality, and the units of
this duality are the restrictions of the units ϕ and ε of Priestley duality (see Remark 3.3(2)).

4 Priestley Duality for Spatial Frames

Let L be a frame and XL the Priestley space of L . Since completely prime filters are prime
filters, pt(L) is a subset of XL , which from now on will be denoted by YL . In [37] elements
of YL are called L-points and in [3] they are called nuclear points. We follow the terminology
of [38] and call them localic points. In addition, we refer to YL as the localic part of XL . The
next lemma shows that open subsets of YL are exactly the intersections of clopen upsets of
XL with YL .

Lemma 4.1 [3, Lem. 5.3(1)] Let L be a frame, XL its Priestley space, and YL ⊆ XL the
localic part of XL . Then ζ(a) = ϕ(a) ∩ YL for each a ∈ L.

The following characterization of YL was given in [37, Prop. 2.9]; see also [9, Lem. 5.1].

Lemma 4.2 Let L be a frame, XL its Priestley space, YL ⊆ XL the localic part of XL , and
x ∈ XL. Then x ∈ YL iff ↓x is clopen.

This motivates the following definition.

Definition 4.3 Let X be an L-space. We call

Y := {y ∈ X | ↓y is clopen}
the localic part of X . We view Y as a topological space, whereU ⊆ Y is open iffU = V ∩Y
for some V ∈ ClopUp(X).

Definition 4.4 Let X be an L-space and Y the localic part of X . We call a closed upset F of
X a Scott upset if min(F) ⊆ Y .

Scott upsets were introduced in [12] where it was shown that they provide a characteri-
zation of Scott-open filters of a frame in the language of Priestley spaces. The next lemma
provides a characterization of Scott upsets.

Lemma 4.5 ([12, Lem. 5.1]) Let X be an L-space and F a closed upset of X. Then F is a
Scott upset iff for every open upset U of X, from F ⊆ clU it follows that F ⊆ U.
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Remark 4.6 In [37] closed sets satisfying the property in Lemma 4.5 are called L-compact
sets. Thus, Scott upsets are exactly the upsets of L-compact sets.

Spatial frames are characterized by the following theorem. The equivalence (1)⇔(2) is
proved in [3, Thm. 5.5] and the equivalence (1)⇔(3) in [37, Sec. 2.11].

Theorem 4.7 Let L be a frame, XL its Priestley space, and YL ⊆ XL the localic part of XL .
The following are equivalent.

(1) L is spatial.
(2) YL is dense in XL .
(3) For clopen upsets U , V of XL , from U � V it follows that there is a Scott upset F of XL

such that F ⊆ U but F � V .

Remark 4.8 By Theorem 4.7(2), if U is clopen in XL , then cl(U ∩ YL) = U . In particular,
for a ∈ L , by Lemma 4.1 we have cl ζ(a) = cl(ϕ(a)∩YL) = ϕ(a) (see also [37, Sec. 2.12]).

Definition 4.9 (1) An L-space X is L-spatial or simply an SL-space if the localic part Y of
X is dense in X .

(2) Let SLPries be the full subcategory of LPries consisting of SL-spaces.

As a consequence of Theorems 3.9 and 4.7 we obtain:

Corollary 4.10 SFrm is dually equivalent to SLPries.

We next connect SLPries with Sob. In order to do so, we show that mapping an L-space
to its localic part is functorial. For this we need the following lemmas.

Lemma 4.11 Let X be an L-space and Y the localic part of X. Then Y is a sober space.

Proof By Lemmas 4.1 and 4.2, Y is homeomorphic to pt(ClopUp(X)). Thus, Y is sober
(see, e.g., [32, p. 20]). ��
Lemma 4.12 Let X1, X2 be L-spaces, Y1, Y2 their localic parts, and f : X1 → X2 an
L-morphism.

(1) f (Y1) ⊆ Y2.
(2) The restriction f : Y1 → Y2 is a well-defined continuous map.

Proof (1) Let y ∈ Y1 and set U = (↓ f (y))c. Since y /∈ f −1(U ) and f −1(U ) is an upset,
↓y ∩ f −1(U ) = ∅. Because y ∈ Y1, we have ↓y is open, so y /∈ cl f −1(U ) = f −1(clU )

(see Definition 3.8(2)). Therefore, f (y) /∈ clU , and so f (y) ∈ int↓ f (y). By Lemma 3.4(7),
int↓ f (y) is a downset. Thus, f (y) ∈ int↓ f (y) implies that ↓ f (y) = int↓ f (y), hence
↓ f (y) is open. Consequently, f (y) ∈ Y2.

(2) That the restriction of f is well defined follows from (1). For continuity, it suffices
to show that f −1(U ∩ Y2) ∩ Y1 is open in Y1 for every clopen upset U of X2. By (1),
f −1(U ∩ Y2) ∩ Y1 = f −1(U ) ∩ Y1. Since f is a Priestley morphism, f −1(U ) is a clopen
upset of X1. Thus, f −1(U ) ∩ Y1 is an open subset of Y1. ��

We define a functor Y : SLPries → Sob by sending an SL-space X to its localic part Y ,
and an L-morphism f : X1 → X2 to its restriction f : Y1 → Y2. It follows easily from
Lemmas 4.11 and 4.12(2) that Y is a well-defined covariant functor.

Theorem 4.13 Y is essentially surjective.
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Proof Suppose Z is a sober space. Then Z is homeomorphic to pt(O(Z)) (see, e.g., [32,
p. 20]). Let X be the Priestley space of O(Z). It follows from Lemma 4.1 that pt(O(Z)) is
(homeomorphic to) the localic part of X . ��

To show that Y is full and faithful, we need the following lemmas.

Lemma 4.14 Let X be an L-space and Y the localic part of X.

(1) clU ∩ Y = U ∩ Y for each open upset U of X.
(2) clU ∩ Y = U for each open set U of Y .

Proof (1) We clearly have thatU ∩Y ⊆ clU ∩Y . For the reverse inclusion, let y ∈ clU ∩Y .
Since y ∈ Y , we have that ↓y is open. Hence, ↓y∩U �= ∅. Thus, there is x ∈ U with x ≤ y.
Since U is an upset, we must have y ∈ U , so y ∈ U ∩ Y .

(2) Since U is open in Y , there is a clopen upset V of X such that U = V ∩ Y . Thus,
clU ⊆ V , and hence U ⊆ clU ∩ Y ⊆ V ∩ Y = U . ��
Lemma 4.15 Let X be an SL-space and Y the localic part of X. For open subsets U and V
of Y we have clU ∩ cl V = cl(U ∩ V ).

Proof Let U and V be open subsets of Y . Then there exist U ′, V ′ ∈ ClopUp(X) such that
U = U ′ ∩ Y and V = V ′ ∩ Y . Since X is L-spatial, Y is dense in X , so U ′ = clU and
V ′ = cl V . Therefore, because U ′ ∩ V ′ is clopen in X , we have

U ′ ∩ V ′ = cl((U ′ ∩ V ′) ∩ Y ) = cl((U ′ ∩ Y ) ∩ (V ′ ∩ Y )) = cl(U ∩ V ).

Thus, clU ∩ cl V = U ′ ∩ V ′ = cl(U ∩ V ). ��
Lemma 4.16 Let X1, X2 be SL-spaces, Y1, Y2 their localic parts, g : Y1 → Y2 a continuous
map, and x ∈ X1. Then Px := {U ∈ ClopUp(X2) | x ∈ cl[g−1(U ∩ Y2)]} is a prime filter
in ClopUp(X2).

Proof It is easy to see that Px is an upset and that U ∪ V ∈ Px implies U ∈ Px or V ∈ Px .
LetU , V ∈ Px . Then x ∈ cl[g−1(U∩Y2)], cl[g−1(V ∩Y2)]. SinceU∩Y2, V ∩Y2 are open in
Y2 and g is continuous, g−1(U∩Y2), g−1(V ∩Y2) are open in Y1. Therefore, by Lemma 4.15,

x ∈ cl[g−1(U ∩ Y2)] ∩ cl[g−1(V ∩ Y2)] = cl[g−1(U ∩ Y2) ∩ g−1(V ∩ Y2)]
= cl[g−1((U ∩ V ) ∩ Y2)].

Thus, U ∩ V ∈ Px , and hence Px is a prime filter. ��
Lemma 4.17 Suppose that X1, X2 are SL-spaces, Y1, Y2 are their localic parts, and g : Y1 →
Y2 is a continuous map. Then there is an L-morphism f : X1 → X2 which extends g.

Proof Let x ∈ X1. By Lemma 4.16, Px = {U ∈ ClopUp(X2) | x ∈ cl[g−1(U ∩ Y2)]} is
a prime filter of ClopUp(X). By Lemma 3.4(6),

⋂Px = ↑z for a unique z ∈ X2. Define
f : X1 → X2 by f (x) = z for each x ∈ X1. It is clear that f is a well-defined map. To see
that f extends g, suppose y ∈ Y1. Then

↑g(y) =
⋂

{U ∈ ClopUp(X2) | g(y) ∈ U }
=

⋂
{U ∈ ClopUp(X2) | g(y) ∈ U ∩ Y2}
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=
⋂

{U ∈ ClopUp(X2) | y ∈ g−1(U ∩ Y2)}
=

⋂
{U ∈ ClopUp(X2) | y ∈ cl[g−1(U ∩ Y2)]} =

⋂
Py,

where the second to last equality follows from Lemma 4.14(2). Thus, f (y) = g(y) by
definition of f .

To see that f is continuous, supposeU is a clopenupset of X2. ThenU∩Y2 is an open subset
of Y2. Since g is continuous, g−1(U ∩Y2) is an open subset of Y1, and hence cl g−1(U ∩Y2)
is a clopen upset of X1 (because X1 is L-spatial). But cl g−1(U ∩ Y2) = f −1(U ) since by
definition of f we have

x ∈ cl g−1(U ∩ Y2) ⇐⇒ U ∈ Px ⇐⇒
⋂

Px ⊆ U ⇐⇒ ↑ f (x) ⊆ U

⇐⇒ f (x) ∈ U ⇐⇒ x ∈ f −1(U ),

where in the second equivalence we use thatU is clopen, hence compact. Thus, f −1(U ) is a
clopen upset of X1. Since clopen downsets are complements of clopen upsets, we also obtain
f −1(D) is a clopen downset for each clopen downset D of X2. Thus, f is continuous since
clopen upsets and clopen downsets form a subbasis of X2 (see Lemma 3.4(1)).

To see that f is order-preserving, since cl g−1(U ∩ Y2) = f −1(U ) is an upset, x ≤ z
implies Px ⊆ Pz . Therefore,

⋂Pz ⊆ ⋂Px , and hence f (x) ≤ f (z). Thus, f is order-
preserving.

It is left to prove that cl f −1(U ) = f −1 clU for each open upsetU of X2. The left-to-right
inclusion follows from the continuity of f . For the right-to-left inclusion, let x ∈ f −1(clU ).
Then f (x) ∈ clU , so ↑ f (x) ⊆ clU by Lemma 3.4(7). Therefore,

⋂Px ⊆ clU and clU is
open sinceU is an open upset and X2 is an L-space. SincePx is a filter, by compactness there
is V ∈ Px such that V ⊆ clU . The former means that x ∈ cl g−1(V ∩Y2) = cl f −1(V ∩Y2),
which together with the latter and Lemma 4.14(1) gives

x ∈ cl f −1(V ∩ Y2) ⊆ cl( f −1(clU ∩ Y2)) = cl f −1(U ∩ Y2) ⊆ cl f −1(U ).

Thus, f is an L-morphism. ��

Theorem 4.18 Y is full and faithful.

Proof To see that Y is full, suppose g : Y1 → Y2 is a continuous map. By Lemma 4.17,
there is an L-morphism f : X1 → X2 extending g. Thus, Y f = g. To see that Y is faithful,
suppose f1, f2 : X1 → X2 are L-morphisms with f1 �= f2. Since Y1 is a dense subset of X1

and X2 is Hausdorff, f1 and f2 must be the unique extensions of their restrictions Y f1 and
Y f2 to Y1 (see, e.g., [16, p. 70]). Thus, Y f1 �= Y f2. ��

Corollary 4.19 SLPries is equivalent to Sob.

Proof By Theorems 4.13 and 4.18, Y is essentially surjective, full, and faithful. Thus, Y is
an equivalence (see, e.g., [31, p. 93]). ��

Combining Corollaries 4.10 and 4.19 yields an alternative proof of the well-known result
mentioned in the introduction that SFrm is dually equivalent to Sob. In the next section we
will restrict the correspondence between SFrm, SLPries, and Sob to obtain an alternative
proof of Hofmann–Lawson duality.
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5 Deriving Hofmann–Lawson Duality

Definition 5.1 Suppose X is an L-space.

(1) For U , V ∈ ClopUp(X), define V 	 U provided for each open upset W of X we have
U ⊆ clW implies V ⊆ W .

(2) For U ∈ ClopUp(X), define the kernel of U as

kerU =
⋃

{V ∈ ClopUp(X) | V 	 U }.
If X is the Priestley dual of a frame L and U = ϕ(a) for some a ∈ L , we simply write

ker(a) for kerU .

Lemma 5.2 Let X be an L-space and U , V clopen upsets of X.

(1) kerU is an open upset contained in U.
(2) ker is monotone.
(3) V ⊆ kerU iff V 	 U.
(4) U ⊆ clW implies kerU ⊆ W for each open upset W .

Moreover, if X is the Priestley space of a frame L and a, b ∈ L, then

(5) a 	 b iff ϕ(a) 	 ϕ(b) iff ϕ(a) ⊆ ker(b).

If in addition L is spatial, then

(6) a 	 b iff ϕ(a) ⊆ ↑(ϕ(b) ∩ YL).

Proof (1) This is immediate from the definition of kerU since V 	 U implies V ⊆ U .
(2) Let U1 ⊆ U2, and let V be a clopen upset with V 	 U1. Suppose W is an open

upset such that U2 ⊆ clW . Then U1 ⊆ clW , so V ⊆ W . Hence, V 	 U2. Consequently,
kerU1 ⊆ kerU2.

(3) The right-to-left implication is immediate from the definition. For the left-to-right
implication, if V ⊆ kerU then by compactness there is a clopen upset V ′ 	 U such that
V ⊆ V ′. Therefore, V 	 U .

(4) Suppose U ⊆ clW and let x ∈ kerU . Then there is a clopen upset V of X with
x ∈ V 	 U . Hence, x ∈ V ⊆ W .

(5) Suppose that a 	 b and U is an open upset of X such that ϕ(b) ⊆ clU . Since
U = ⋃

ϕ[S] for some S ⊆ L , by Lemma 3.6, we have

ϕ(b) ⊆ cl
(⋃

ϕ[S]
)

= ϕ
(∨

S
)

.

Therefore, b ≤ ∨
S. Since a 	 b, there is a finite T ⊆ S such that a ≤ ∨

T . Thus,

ϕ(a) ⊆ ϕ
(∨

T
)

=
⋃

ϕ[T ] ⊆
⋃

ϕ[S] = U .

Consequently, ϕ(a) 	 ϕ(b).
Conversely, suppose that ϕ(a) 	 ϕ(b). Therefore, ϕ(b) ⊆ clU implies ϕ(a) ⊆ U for all

open upsets U ⊆ XL . Let b ≤ ∨
S for some S ⊆ L . Then

ϕ(b) ⊆ ϕ
(∨

S
)

= cl
⋃

ϕ[S].
By assumption, ϕ(a) ⊆ ⋃

ϕ[S]. Since ϕ(a) is compact, ϕ(a) ⊆ ϕ[T ] = ϕ(
∨

T ) for some
finite T ⊆ S. Thus, a ≤ ∨

T , and hence a 	 b.
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This proves that a 	 b iff ϕ(a) 	 ϕ(b). The latter is equivalent to ϕ(a) ⊆ ker(b) by (3).
(6) Suppose ϕ(a) � ↑(ϕ(b)∩YL). Then there is x ∈ ϕ(a) such that ↓x ∩ϕ(b)∩YL = ∅.

Therefore, ϕ(b) ∩ YL ⊆ (↓x)c. Since L is spatial, Remark 4.8 implies that ϕ(b) ⊆ cl(↓x)c.
Hence, ϕ(b) is contained in the closure of the open upset (↓x)c, while ϕ(a) � (↓x)c. Thus,
a �	 b by (5).

For the converse, suppose that ϕ(a) ⊆ ↑(ϕ(b) ∩ YL) and b ≤ ∨
S for some S ⊆ L . Then

ϕ(b) ⊆ cl
⋃

ϕ[S]. Therefore, ϕ(b) ∩ YL ⊆ cl(
⋃

ϕ[S]) ∩ YL = ⋃
ϕ[S] ∩ YL ⊆ ⋃

ϕ[S] by
Lemma 4.14(1). Thus, ↑(ϕ(b)∩YL ) ⊆ ⋃

ϕ[S]. By assumption, ϕ(a) ⊆ ⋃
ϕ[S]. Since ϕ(a)

is compact, ϕ(a) ⊆ ⋃
ϕ[T ] for some finite T ⊆ S. Hence, a ≤ ∨

T , and so a 	 b. ��
Remark 5.3 The equivalence of the first two items of Lemma 5.2(5) was first proved in [36,
Prop. 3.6].

Definition 5.4 Let X be an L-space.

(1) We call a clopen upset U of X packed if kerU is dense in U .
(2) We call X a continuous L-space or simply aCL-space if each clopen upset of X is packed.

Theorem 5.5 Let L be a frame, XL its Priestley space, and a ∈ L.

(1) a = ∨{b ∈ L | b 	 a} iff ϕ(a) is packed.
(2) L is a continuous frame iff XL is a CL-space.

Proof (1) By Lemmas 3.6 and 5.2(5),

a =
∨

{b ∈ L | b 	 a} ⇐⇒ ϕ(a) = cl ker(a) ⇐⇒ ker(a) is dense in ϕ(a).

(2) This follows from (1). ��
It is a well-known fact (see, e.g., [30, p. 289]) that the way below relation on a continuous

frame L is interpolating (meaning that a 	 b implies a 	 c 	 b for some c ∈ L). In [37,
Lem. 5.3] an alternate proof of this result is given in the language of Priestley spaces:

Lemma 5.6 Let X be a CL-space and U , V ∈ ClopUp(X). If U 	 V , then there is W ∈
ClopUp(X) such that U 	 W 	 V .

The next lemma is established in [37, Sec. 5] (using different terminology).

Lemma 5.7 Let X be an L-space and U , V ∈ ClopUp(X).

(1) If there is a Scott upset F with U ⊆ F ⊆ V , then U 	 V .
(2) If X is a CL-space, then the converse of (1) also holds.

It is well known (see, e.g., [30, p. 311]) that a continuous frame is spatial. In [37, Prop. 4.6]
an alternate proof of this result is given in the language of Priestley spaces:

Theorem 5.8 If X is a CL-space, then X is L-spatial.

Consequently, if X is a CL-space, then Y is dense in X . We next prove that an L-spatial X
is a CL-space iff Y is locally compact. For this we require the following lemma related to the
Hofmann–Mislove Theorem [27] (see also [22, Thm. II−1.20]). Recall that the Hofmann–
Mislove Theorem establishes a (dual) isomorphism between the poset of compact saturated
sets of a sober space Y and the poset of Scott-open filters of the frame of opens of Y . Since
Scott upsets correspond to Scott-open filters (see [12, Lem5.1]), the lemma is in fact a version
of the Hofmann–Mislove Theorem in the language of Priestley spaces.
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Lemma 5.9 ([12, Thm. 5.7]) Let L be a frame, XL its Priestley space, and YL ⊆ XL the
localic part of XL . The map F �→ F ∩ YL is an isomorphism from the poset of Scott upsets
of XL to the poset of compact saturated sets of YL (both ordered by inclusion). The inverse
isomorphism is given by K �→ ↑K.

Theorem 5.10 Let L be a spatial frame, XL its Priestley space, and YL ⊆ XL the localic
part of XL . Then XL is a CL-space iff YL is locally compact.

Proof First suppose that XL is a CL-space, y ∈ YL , and ζ(a) is an open neighborhood of y.
Since ζ(a) = ϕ(a) ∩ YL (see Lemma 4.1), we have

y ∈ ϕ(a) = cl ker(a) = cl
⋃

{ϕ(b) | ϕ(b) 	 ϕ(a)}.
Because ↓y is open, y ∈ ϕ(b) for some ϕ(b) 	 ϕ(a). Therefore,

y ∈ ϕ(b) ∩ YL = ζ(b).

By Lemma 5.7(2), there is a Scott upset F such that ϕ(b) ⊆ F ⊆ ϕ(a). Thus,
y ∈ ζ(b) ⊆ F ∩ YL ⊆ ζ(a). By Lemma 5.9, F ∩ YL is compact. Consequently, YL is
locally compact.

Conversely, suppose that YL is locally compact and a ∈ L . We must show that ker(a)

is dense in ϕ(a). Let x ∈ ϕ(a) and W be an open neighborhood of x in XL . By
Lemma 3.4(1), there exist clopen upsetsU and V of XL such that x ∈ U ∩ V c ⊆ W . There-
fore,U ∩V c∩ϕ(a) �= ∅. Because L is spatial, YL is dense in XL , soU ∩V c∩ζ(a) �= ∅, and
hence there is y ∈ U ∩V c ∩ ζ(a). Since YL is locally compact, there is b ∈ L and a compact
saturated K ⊆ YL such that y ∈ ζ(b) ⊆ K ⊆ ζ(a). By Lemma 5.9, ↑K is a Scott upset.
Thus, ↑K is closed, and so ϕ(b) = cl ζ(b) ⊆ ↑K by Remark 4.8 (which is applicable since
XL is L-spatial by Theorem 4.7). Therefore, ϕ(b) ⊆ ↑K ⊆ ϕ(a). Then ϕ(b) 	 ϕ(a) by
Lemma 5.7(1). Thus, y ∈ ker(a) by Lemma 5.2(3). This implies thatU ∩ V c ∩ ker(a) �= ∅,
so ker(a) is dense in ϕ(a). ��

Theorems 5.5(2) and 5.10 establish a one-to-one correspondence between continuous
frames, CL-spaces, and locally compact sober spaces. Next, we extend these to categorical
equivalences.

Lemma 5.11 Let h : L1 → L2 be a frame homomorphism and f : XL2 → XL1 its dual
L-morphism. Then h is proper iff

f −1(kerU ) ⊆ ker f −1(U ) (�)

for all U ∈ ClopUp(XL1).

Proof First suppose that h is proper and U ∈ ClopUp(XL1). Let x ∈ f −1(kerU ). Then
f (x) ∈ kerU . Therefore, there is V ∈ ClopUp(XL1) with f (x) ∈ V 	 U . Since U , V ∈
ClopUp(XL1), there exist a, b ∈ L1 with ϕ(a) = V and ϕ(b) = U . Then a 	 b by
Lemma 5.2(5). Since h is proper, ha 	 hb, and hence using Lemma 5.2(5) again, f −1(V ) =
ϕ(ha) 	 ϕ(hb) = f −1(U ). Thus, x ∈ f −1(V ) 	 f −1(U ), and so x ∈ ker f −1(U ).

Conversely, suppose that (�) holds for all U ∈ ClopUp(XL1). Let a 	 b. Then
ϕ(a) ⊆ ker(b) byLemma5.2(5). Therefore, f −1(ϕ(a)) ⊆ f −1(ker(b)). Thus, f −1(ϕ(a)) ⊆
ker f −1(ϕ(b)) by (�). Consequently, f −1(ϕ(a)) 	 f −1(ϕ(b)) by Lemma 5.2(3). Hence,
ϕ(ha) 	 ϕ(hb), and so ha 	 hb by Lemma 5.2(5), yielding that h is proper. ��
Definition 5.12 Let f : X1 → X2 be an L-morphism between L-spaces. We call f proper
if f satisfies (�) for all clopen upsets of X2.
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It is straightforward to check that CL-spaces and proper L-morphisms form a category,
which we denote by ConLPries.

Theorem 5.13 ConFrm is dually equivalent to ConLPries.

Proof The units ϕ : L → DX (L) and ε : X → X D(X) of Pultr–Sichler duality
(see Remark 3.10) remain isomorphisms in ConFrm and ConLPries. Thus, it follows from
Theorem 5.5(2) and Lemma 5.11 that the restrictions of the functors X and D yield a dual
equivalence between ConFrm and ConLPries. ��

We next give several equivalent conditions for an L-morphism between CL-spaces to be
proper. For this we require the following lemma, item (1) of which generalizes [37, Lem. 4.5]
and provides means to find Scott upsets.

Lemma 5.14 Let X be a CL-space.

(1) Suppose that U is a down-directed family of clopen upsets of X such that
⋂U =⋂{kerU | U ∈ U}. Then ⋂U is a Scott upset.

(2) kerU = ↑(U ∩ Y ) for every U ∈ ClopUp(X).

Proof (1) Clearly
⋂U is a closed upset. To see that it is a Scott upset, by Lemma 4.5 it is

enough to show that
⋂U ⊆ cl V implies

⋂U ⊆ V for every open upset V of X . Note that
cl V is open since X is an L-space. Therefore, since X is compact and

⋂U is down-directed,
from

⋂U ⊆ cl V it follows that there is U ∈ U with U ⊆ cl V . Thus, kerU ⊆ V by
Lemma 5.2(4). Since U ∈ U and

⋂U = ⋂{kerU | U ∈ U}, we have
⋂U ⊆ kerU .

Consequently,
⋂U ⊆ V .

(2) First suppose that x ∈ kerU . Then there is V ∈ ClopUp(X) with x ∈ V 	 U . By
Lemma 5.7(2), there is a Scott upset F with V ⊆ F ⊆ U . Therefore, there is y ∈ F ∩ Y
with y ≤ x . Thus, x ∈ ↑(U ∩ Y ).

Conversely, suppose that x ∈ ↑(U ∩ Y ). Then there is y ∈ U ∩ Y with y ≤ x . Since U
is packed, U = cl kerU , so ↑y ⊆ cl kerU . Thus, since ↑y is a Scott upset and kerU is an
open upset, x ∈ ↑y ⊆ kerU by Lemma 4.5. ��
Theorem 5.15 Let X1 and X2 be CL-spaces, Y1 and Y2 the localic parts of X1 and X2

respectively, and f : X1 → X2 an L-morphism. The following are equivalent.

(1) f is proper.
(2) f −1↑(U ∩ Y2) = ↑( f −1(U ) ∩ Y1) for all U ∈ ClopUp(X2).
(3) f −1(↑y) is a Scott upset of X1 for all y ∈ Y2.
(4) f −1(F) is a Scott upset of X1 for all Scott upsets F of X2.
(5) ↓ f (x) ∩ Y2 ⊆ ↓ f (↓x ∩ Y1) for all x ∈ X1.

Proof (1)⇒(2) Suppose x ∈ f −1↑(U∩Y2). Then x ∈ f −1(kerU ) by Lemma 5.14(2). Since
f is proper, x ∈ ker f −1(U ), and using Lemma 5.14(2) again yields x ∈ ↑( f −1(U ) ∩ Y1).
For the converse, suppose x ∈ ↑( f −1(U ) ∩ Y1). Then x ≥ y for some y ∈ f −1(U ) ∩ Y1.
Therefore, f (x) ≥ f (y) and f (y) ∈ U . By Lemma 4.12(1), f (Y1) ⊆ Y2. Thus, f (y) ∈
U ∩ Y2, so f (x) ∈ ↑(Y ∩ Y2), and hence x ∈ f −1↑(Y ∩ Y2).

(2)⇒(3) Since ↑y is a closed upset, ↑y = ⋂{U ∈ ClopUp(X2) | y ∈ U } by
Lemma 3.4(3). Therefore, we have ↑y = ⋂{↑(U ∩ Y2) | y ∈ U ∈ ClopUp(X2)} since
y ∈ Y2. Thus, by (2) and Lemma 5.14(2),
⋂

{ f −1(U ) | y ∈ U ∈ ClopUp(X2)} = f −1
(⋂

{U ∈ ClopUp(X2) | y ∈ U }
)
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= f −1
(⋂

{↑(U ∩ Y2) | y ∈ U ∈ ClopUp(X2)}
)

=
⋂

{ f −1↑(U ∩ Y2) | y ∈ U ∈ ClopUp(X2)}
=

⋂
{↑( f −1(U ) ∩ Y1) | y ∈ U ∈ ClopUp(X2)}

=
⋂

{ker f −1(U ) | y ∈ U ∈ ClopUp(X2)}.
Consequently,

f −1(↑y) =
⋂

{ f −1(U ) | y ∈ U ∈ ClopUp(X2)}
=

⋂
{ker f −1(U ) | y ∈ U ∈ ClopUp(X2)}

is a Scott upset by Lemma 5.14(1).
(3)⇒(4) Let F be a Scott upset of X2. By (3) we have

min f −1(F) = min f −1
⋃

{↑y | y ∈ min F}
= min

⋃
{ f −1(↑y) | y ∈ min F}

⊆
⋃

{min f −1(↑y) | y ∈ min F} ⊆ Y1.

Thus, f −1(F) is a Scott upset of X1.
(4)⇒(5) Suppose y2 ∈ ↓ f (x) ∩ Y2. Then ↑y2 is a Scott upset of X2, so f −1(↑y2) is a

Scott upset of X1 by (4). Since x ∈ f −1(↑y2), there is y1 ∈ min f −1(↑y2) such that y1 ≤ x .
Therefore, y2 ≤ f (y1) and y1 ∈ ↓x ∩ Y1. Thus, y2 ∈ ↓ f (↓x ∩ Y1).

(5)⇒(1) Let x ∈ f −1(kerU ). Then f (x) ∈ ker(U ), and Lemma 5.14(2) implies that
f (x) ∈ ↑(U∩Y2). Therefore, there is y ∈ ↓ f (x)∩(U∩Y2). By (5), y ∈ ↓ f (↓x∩Y1), so there
is y′ ∈ ↓x∩Y1 with y ≤ f (y′). Thus, f (y′) ∈ U , and hence y′ ∈ f −1(U )∩Y1. Consequently,
Lemma 5.14(2) yields that x ∈ ↑( f −1(U ) ∩ Y1) = ker( f −1(U ) ∩ Y1) ⊆ ker f −1(U ). ��

Let h : L1 → L2 be a frame homomorphism between continuous frames, f : XL2 →
XL1 its dual L-morphism, and Y f : YL2 → YL1 the restriction of f . The next theorem
characterizes when each of these maps is proper.

Theorem 5.16 The following are equivalent.

(1) h : L1 → L2 is a proper frame homomorphism.
(2) f : XL2 → XL1 is a proper L-morphism.
(3) Y f : YL2 → YL1 is a proper map.

Proof (1)⇔(2) This follows from Lemma 5.11.
(2)⇒(3) We let g = Y f and verify that g satisfies Definition 2.4(2). By Remark 2.5(1),

it is sufficient to show that g−1(U ) is compact for each compact saturatedU in YL1 . SinceU
is compact saturated in YL1 , we have that ↑U is a Scott upset of XL1 by Lemma 5.9. Hence,
f −1(↑U ) is a Scott upset of XL2 by Theorem 5.15(4). Thus, f −1(↑U ) ∩ YL2 is compact
saturated in YL2 by Lemma 5.9. But f −1(↑U ) ∩ YL2 = g−1(U ) because U is saturated in
YL2 and g is the restriction of f to YL2 . Therefore, g

−1(U ) is compact.
(3)⇒(2) By Theorem 5.15(3), it is enough to show that f −1(↑y) is a Scott upset of XL2

for each y ∈ YL1 . Since y ∈ YL1 , we have that ↑y is a Scott upset of XL1 , so ↑y ∩ YL1 is
compact saturated in YL1 by Lemma 5.9. Let g = Y f . Because g is proper, g−1(↑y ∩ YL1)

is compact saturated in YL2 . Hence, ↑g−1(↑y ∩ YL1) is a Scott upset of XL2 by Lemma 5.9.
Therefore, it suffices to show that f −1(↑y) = ↑g−1(↑y ∩ YL1).
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Clearly ↑g−1(↑y ∩ YL1) ⊆ f −1(↑y). For the reverse inclusion, let x /∈ ↑g−1(↑y ∩ YL1).
Then there is a clopen downset D of XL2 such that x ∈ D and D ∩ g−1(↑y ∩ YL1) = ∅.
Hence, y /∈ ↓g(D ∩ YL2). Since g is proper, ↓g(D ∩ YL2) ∩ YL1 is closed in YL1 , and so
↓g(D ∩ YL2) ∩ YL1 = E ∩ YL1 for some clopen downset E of XL1 . Therefore, y /∈ E and
g(D ∩ YL2) ⊆ E , so ↓ cl g(D ∩ YL2) ⊆ E . Because XL1 and XL2 are CL-spaces, they are
L-spatial by Theorem 5.8. Thus, since f is a closed map, we have

↓ f (D) = ↓ f cl(D ∩ YL2) = ↓ cl f (D ∩ YL2) = ↓ cl g(D ∩ YL2) ⊆ E .

Consequently, y /∈ ↓ f (D), and hence x /∈ f −1(↑y). ��
Corollary 5.17 Suppose X1, X2 are CL-spaces and g : Y1 → Y2 is a proper map between
their localic parts. Then there is a proper L-morphism f : X1 → X2 extending g.

Proof By Lemma 4.17, there is an L-morphism f : X1 → X2 extending g. Thus, Y f = g,
and so f is proper by Theorem 5.16. ��
Theorem 5.18 ConLPries is equivalent to LKSob.

Proof It follows from Theorem 5.10 that the restriction of Y is well defined on objects.
By Theorem 5.16, the restriction of Y is also well defined on morphisms. This together
with Corollary 5.17 shows that Theorems 4.13 and 4.18 apply to yield that the restriction
Y : ConLPries → LKSob is essentially surjective, full, and faithful. ��

We thus obtain the following alternative proof of Hofmann–Lawson duality:

Corollary 5.19 (Hofmann–Lawson) ConFrm is dually equivalent to LKSob.

Proof Combine Theorems 5.13 and 5.18. ��

6 Deriving Dualities for Stably Continuous Frames

To derive the two dualities for stably continuous frames, we first characterize stability of 	
in the language of Priestley spaces.

Lemma 6.1 Let L be a continuous frame, XL its Priestley space, and YL ⊆ XL the localic
part of XL . For a, b ∈ L we have

(∀c ∈ L)(c 	 a, b ⇒ c 	 a ∧ b) iff ker(a) ∩ ker(b) = ker(a ∧ b).

Proof First suppose that (∀c ∈ L)(c 	 a, b ⇒ c 	 a ∧ b). Then Lemma 5.2(5) gives

(∀c ∈ L)(ϕ(c) 	 ϕ(a), ϕ(b) �⇒ ϕ(c) 	 ϕ(a) ∩ ϕ(b)). (�)

Since ker is monotone (see Lemma 5.2(2)), ker(a ∧ b) ⊆ ker(a) ∩ ker(b). For the reverse
inclusion, let x ∈ ker(a) ∩ ker(b). Then there are d, e ∈ L with x ∈ ϕ(d) 	 ϕ(a) and
x ∈ ϕ(e) 	 ϕ(b). Let c = d ∧ e. Then x ∈ ϕ(c) 	 ϕ(a), ϕ(b). Consequently, by (�),
ϕ(c) 	 ϕ(a) ∩ ϕ(b) = ϕ(a ∧ b). Therefore, x ∈ ker(a ∧ b) by Lemma 5.2(5). Thus,
ker(a) ∩ ker(b) = ker(a ∧ b).

For the converse, suppose that ker(a)∩ker(b) = ker(a∧b). Let c ∈ L with c 	 a, b. Then
ϕ(c) ⊆ ker(a), ker(b) by Lemma 5.2(5). Therefore, ϕ(c) ⊆ ker(a) ∩ ker(b) = ker(a ∧ b).
Thus, using Lemma 5.2(5) again, we obtain c 	 a ∧ b. ��

123



   34 Page 18 of 28 G. Bezhanishvili, S. Melzer

The previous lemma motivates defining stability in terms of kernels commuting with
intersections. We will see in Lemma 6.3 that for CL-spaces this property coincides with the
property that binary intersections of Scott upsets are Scott upsets.

Definition 6.2 Let X be an L-space.

(1) We call X kernel-stable if for all clopen upsets U and V of X we have

kerU ∩ ker V = ker(U ∩ V ).

(2) We call X Scott-stable if for all Scott upsets F and G of X we have that F ∩G is a Scott
upset.

Lemma 6.3 Let X be a CL-space.

(1) For every Scott upset F, we have F = ⋂{kerU | F ⊆ U ∈ ClopUp(X)}.
(2) X is kernel-stable iff X is Scott-stable.

Proof (1) Suppose F ⊆ U ∈ ClopUp(X). Since X is a CL-space, F ⊆ cl kerU . By
Lemma 5.2(1), kerU is an open upset. Therefore, F ⊆ kerU by Lemma 4.5. Thus,
we have that F ⊆ ⋂{kerU | F ⊆ U ∈ ClopUp(X)}. For the reverse inclusion, by
Lemma 3.4(3), we have

F =
⋂

{U | F ⊆ U ∈ ClopUp(X)} ⊇
⋂

{kerU | F ⊆ U ∈ ClopUp(X)}.
(2) Suppose X is kernel-stable. Let F,G be Scott upsets. If U , V ,W range over clopen

upsets of X , by (1) we have

F ∩ G =
⋂

{kerU | F ⊆ U } ∩
⋂

{ker V | G ⊆ V }
=

⋂
{kerU ∩ ker V | F ⊆ U ,G ⊆ V }

=
⋂

{ker(U ∩ V ) | F ⊆ U ,G ⊆ V }
=

⋂
{kerW | F ∩ G ⊆ W }

⊆
⋂

{W | F ∩ G ⊆ W } = F ∩ G,

where the last equality follows from Lemma 3.4(3); for the second to last equality it is
enough to observe that by compactness, F ∩ G ⊆ W is equivalent to U ∩ V ⊆ W
for some clopen upsets U ⊇ F and V ⊇ G. Thus, F ∩ G is a Scott upset by
Lemma 5.14(1), and hence X is Scott-stable.

Conversely, suppose X is Scott-stable. LetU , V be clopen upsets. Since kerU is an open
upset for each U (see Lemma 5.2(1)), it suffices to show that W ⊆ ker(U ) ∩ ker(V ) iff
W ⊆ ker(U ∩V ) for each clopen upsetW (see Lemma 3.4(2)). LetW be a clopen upset. By
Lemma 5.2(3), W ⊆ ker(U ) ∩ ker(V ) iff W 	 U , V . By Lemma 5.7, this happens iff there
are Scott upsets F and G such that W ⊆ F ⊆ U and W ⊆ G ⊆ V . Since X is Scott-stable,
the latter is equivalent to the existence of a Scott upset H such that W ⊆ H ⊆ U ∩ V . By
invoking Lemma 5.7 again, this is equivalent to W 	 U ∩ V , which in turn is equivalent to
W ⊆ ker(U ∩ V ) by Lemma 5.2(3). Thus, X is kernel-stable. ��
Theorem 6.4 Let L be a frame and XL its Priestley space. Then L is a stably continuous
frame iff XL is a Scott-stable CL-space.

Proof Apply Theorem 5.5(2), Lemma 6.1, and Lemma 6.3(2). ��
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Definition 6.5 We call an L-space stably continuous or simply a StCL-space if it is a Scott-
stable CL-space. Let StCLPries be the full subcategory of ConLPries consisting of StCL-
spaces.

Corollary 6.6 StCFrm is dually equivalent to StCLPries.

Proof Restrict Theorem 5.13 to the full subcategories StCFrm and StCLPries using
Theorem 6.4. ��

Next we show that StCLPries is equivalent to StLKSp.

Theorem 6.7 Let X be an SL-space and Y its localic part. Then X is a StCL-space iff Y is
stably locally compact.

Proof Suppose X is a StCL-space. By Theorem 5.10, Y is locally compact. Let K , J be
compact saturated sets in Y . Then ↑K and ↑J are Scott upsets by Lemma 5.9. Since X is
Scott-stable,↑K ∩↑J is a Scott upset. Therefore, K ∩ J = ↑K ∩↑J∩Y is compact saturated
by Lemma 5.9.

Conversely, suppose that Y is stably locally compact. By Theorem 5.10, X is a CL-space.
By Lemma 6.3(2), it is enough to show that X is kernel-stable. LetU , V ∈ ClopUp(X). Since
ker is monotone by Lemma 5.2(2), it suffices to show that kerU ∩ ker V ⊆ ker(U ∩ V ). Let
x ∈ kerU∩ker V . Then there existU ′, V ′ ∈ ClopUp(X) containing x such thatU ′ 	 U and
V ′ 	 V . By Lemma 5.7(2), there are Scott upsets F ,G withU ′ ⊆ F ⊆ U and V ′ ⊆ G ⊆ V .
By Lemma 5.9, F ∩ Y and G ∩ Y are compact saturated. Since Y is stably locally compact,
F∩G∩Y is compact saturated.Hence,↑(F∩G∩Y ) is a Scott upset byLemma5.9.Moreover,
because F∩G ⊆ U∩V , we have↑(F∩G∩Y ) ⊆ ker(U∩V ) by Lemma 5.14(2). Therefore,
since X is L-spatial, x ∈ U ′ ∩ V ′ = cl(U ′ ∩ V ′ ∩ Y ) ⊆ ↑(F ∩ G ∩ Y ) ⊆ ker(U ∩ V ). ��
Corollary 6.8 StCLPries is equivalent to StLKSp.

Proof Use Theorem 6.7 to restrict Theorem 5.18 to the full subcategories StCLPries and
StLKSp . ��

As a consequence of Corollaries 6.6 and 6.8, we obtain the following well-known duality
for stably continuous frames (see Theorem 2.6(3)):

Corollary 6.9 StCFrm is dually equivalent to StLKSp.

We next turn our attention to stably compact frames.

Lemma 6.10 Let L be a frame and XL its Priestley space. For a ∈ L, the following are
equivalent.

(1) a is compact.
(2) ker(a) = ϕ(a).
(3) ϕ(a) is a Scott upset.

In particular, L is compact iff XL = ker XL iff XL is a Scott upset.

Proof (1)⇒(2) This follows from Lemma 5.2(1) and (5).
(2)⇒(3) Suppose ϕ(a) ⊆ clU for some open upset U of XL . Then ϕ(a) = ker(a) ⊆ U

by Lemma 5.2(4). Therefore, ϕ(a) is a Scott upset by Lemma 4.5.
(3)⇒(1) Since ϕ(a) is a Scott upset, ϕ(a) 	 ϕ(a) by Lemma 5.7(1). Thus, a 	 a by

Lemma 5.2(5).
The last statement follows from the above equivalence and the fact that XL = ϕ(1). ��
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Remark 6.11 The equivalence (1)⇔(3) of Lemma 6.10 is known (see, e.g., [12, Cor. 5.4]),
and so is the fact that L is compact iff XL is a Scott upset (see [36, Thm. 3.5] or [9, Lem. 3.1]).
To this Lemma 6.10 adds a characterization in terms of kernels.

Definition 6.12 Let X be an L-space.

(1) We call X L-compact if X is a Scott upset.
(2) We call X stably L-compact or simply a StKL-space if X is an L-compact StCL-space.
(3) Let StKLPries be the full subcategory of StCLPries consisting of StKL-spaces.

As an immediate consequence of Theorem 6.4 and Lemma 6.10, we obtain:

Theorem 6.13 Let L be a frame and XL its Priestley space. Then L is a stably compact frame
iff XL is a StKL-space.

This together with Corollary 6.6 yields:

Corollary 6.14 StKFrm is dually equivalent to StKLPries.

To connect StKL-spaces with stably compact spaces, we need the following lemma.

Lemma 6.15 Let X be an L-space and Y the localic part of X. If X is L-compact, then Y is
compact. If in addition X is L-spatial, then the converse also holds.

Proof Suppose X is L-compact. Let U be an open cover of Y . For each U ′ ∈ U
there is a clopen upset U of X such that U ∩ Y = U ′. Since X is L-compact,
min(X) ⊆ Y ⊆ ⋃{U | U ′ ∈ U}. Therefore, X = ↑(min X) ⊆ ⋃{U | U ′ ∈ U} because the
latter is an upset. Since X is compact, there areU ′

1, . . . ,U
′
n ∈ U such that X ⊆ U1∪· · ·∪Un .

But then Y ⊆ (U1 ∪ · · · ∪Un) ∩ Y = U ′
1 ∪ · · · ∪U ′

n . Thus, Y is compact.
Conversely, suppose X is not L-compact, so there is x ∈ min(X)\Y . Then ↓x = {x} is

not open. Hence, U = {x}c is an open upset such that x ∈ clU . Since U is an open upset,
U = ⋃{V ∈ ClopUp(X) | x /∈ V } by Lemma 3.4(2). Therefore,

X = clU = cl
⋃

{V ∈ ClopUp(X) | x /∈ V },
and hence Y ⊆ ⋃{V ∈ ClopUp(X) | x /∈ V } by Lemma 4.14(1). If Y were compact, there
would exist a clopen upset V such that x /∈ V and Y ⊆ V . Since X is L-spatial, this would
imply x ∈ X = cl Y ⊆ V , a contradiction. Thus, Y is not compact. ��
Theorem 6.16 Let X be an SL-space and Y its localic part. Then X is a StKL-space iff Y is
stably compact.

Proof Apply Theorem 6.7 and Lemma 6.15. ��
Corollary 6.17 StKLPries is equivalent to StKSp.

Proof Apply Corollary 6.8 and Theorem 6.16. ��
As a consequence of Colloraries 6.14 and 6.17, we obtain the following well-known

duality for stably compact frames (see Theorem 2.6(4)):

Corollary 6.18 StKFrm is dually equivalent to StKSp.
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7 Deriving Isbell Duality

A characterization of the well inside relation ≺ on a frame L in the language of the Priestley
space of L was given in [9, Sec. 3]. Similar to the notion of the kernel of a clopen upset U ,
which we introduced in Sect. 3, the well inside relation induces the notion of the regular part
of U .

Definition 7.1 Let X be an L-space. For U , V ∈ ClopUp(X) we write U ≺ V provided
↓U ⊆ V . Define the regular part of U as

regU =
⋃

{V ∈ ClopUp | V ≺ U }.
When U = ϕ(a), we write reg(a) for regU .

This definition is motivated by the following:

Lemma 7.2 ([9, Sec. 3]) Let X be an L-space. For each U ∈ ClopUp(X) we have

regU = X \ ↓↑(X \U ).

In particular, if X is the Priestley space of a frame L, then for a, b ∈ L we have:

a ≺ b iff ϕ(a) ≺ ϕ(b) iff ϕ(a) ⊆ reg(b).

Consequently, a frame L is regular iff in its Priestley space the regular part of each clopen
upset U is dense in U (see [9, Lem. 3.6]). We will give several equivalent characterizations
for this condition in Lemma 7.4. For this we need the following:

Lemma 7.3 Let X be an L-space, x ∈ X, Z ⊆ X, and U ∈ ClopUp(X).

(1) x ∈ regU iff ↓↑x ⊆ U.
(2) Z ⊆ regU iff ↓↑Z ⊆ U

Proof (1) By Lemma 7.2,

x ∈ regU ⇐⇒ x /∈ ↓↑(X \U ) ⇐⇒ ↑x ∩ ↑(X \U ) = ∅

⇐⇒ ↓↑x ∩Uc = ∅ ⇐⇒ ↓↑x ⊆ U .

(2) This follows from (1) since ↓↑Z = ⋃{↓↑x | x ∈ Z}. ��

Lemma 7.4 Let X be an L-space, Y the localic part of X, andU ∈ ClopUp(X). The following
three conditions are equivalent.

(1) U ∩ Y ⊆ regU.
(2) for each y ∈ U ∩Y there are disjoint clopen upsets V ,W such that y ∈ V and Uc ⊆ W.
(3) ↓↑(U ∩ Y ) ⊆ U.

Moreover, the following condition implies conditions (1)–(3).

(4) regU is dense in U.

Furthermore, if X is L-spatial, all four conditions are equivalent.
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Proof (1)⇒(2) Let y ∈ U ∩ Y . By (1), y ∈ regU . Hence, there is a clopen upset V such
that y ∈ V and ↓V ⊆ U . Since X is an Esakia space, ↓V is a clopen downset. Therefore,
W := (↓V )c is a clopen upset disjoint from V with Uc ⊆ W .

(2)⇒(3) Let x ∈ ↓↑(U ∩ Y ). Then there is y ∈ U ∩ Y such that x ∈ ↓↑y.
By (2), there are disjoint clopen upsets V ,W such that y ∈ V and Uc ⊆ W . Thus,
x ∈ ↓↑y ⊆ ↓V ⊆ Wc ⊆ U .

(3)⇒(1) Apply Lemma 7.3(2).
Therefore, conditions (1)–(3) are equivalent.
(4)⇒(1) Let y ∈ U ∩Y . Then y ∈ cl regU by (4). Since ↓y is open and regU is an upset,

we conclude that y ∈ regU .
Let X be L-spatial.
(1)⇒(4) From U ∩ Y ⊆ regU it follows that cl(U ∩ Y ) ⊆ cl regU . But cl(U ∩ Y ) = U

since X is L-spatial. Thus, regU is dense in U . ��

Remark 7.5 CompareLemma7.4(2) to the usual definition of regularity in topological spaces.

Definition 7.6 Let X be an L-space.

(1) A clopen upset U of X is L-regular if regU is dense in U .
(2) X is L-regular if all its clopen upsets are L-regular.
(3) X is a KRL-space if X is L-compact and L-regular.

Let KRLPries be the full subcategory of LPries consisting ofKRL-spaces. The next theorem
goes back to [9, Sec. 3] (see also [36, Sec. 3]).

Theorem 7.7 Let L be a frame and XL its Priestley space.

(1) ([9, Lem. 3.6]) L is regular iff XL is L-regular.
(2) ([9, Thm. 3.9]) L is compact regular iff XL is a KRL-space.

Corollary 7.8 KRFrm is dually equivalent to KRLPries.

Proof Apply Theorems 3.9 and 7.7(2). ��

Lemma 7.9 Let X be a KRL-space and Y the localic part of X. Then X is L-spatial and Y is
compact.

Proof ByLemma6.15, it is sufficient to show that X is L-spatial, forwhich, byLemma 3.4(1),
it is enough to show thatU ∩ V c �= ∅ impliesU ∩ V c ∩ Y �= ∅ for allU , V ∈ ClopUp(X).
Since X is L-regular, U = cl regU . Therefore, U ∩ V c �= ∅ implies regU ∩ V c �= ∅.
Let z ∈ regU ∩ V c. Because z ∈ regU , there is a clopen upset W containing z such that
↓W ⊆ U . By Lemma 3.4(5), there is y ∈ min(↓W )with y ≤ z. Consequently, y ∈ ↓W ⊆ U
and y ∈ V c since V c is a downset. Moreover, y ∈ Y because y ∈ min(X) and min(X) ⊆ Y
since X is L-compact. ��

Remark 7.10 Lemma 7.9 provides an alternative proof of the well-known fact that each
compact regular frame is spatial (see, e.g., [30, p. 90]).

Theorem 7.11 Let X be an SL-space and Y the localic part of X. Then X is a KRL-space iff
Y is compact Hausdorff.

123



Deriving Dualities in Pointfree Topology from Priestley… Page 23 of 28    34 

Proof Let X be a KRL-space. By Lemma 7.9, Y is compact. We prove that Y is regular.
Let y ∈ Y and F be a closed subset of Y with y /∈ F . Then Y\F is an open subset of Y
containing y. Therefore, there is a clopen upset U of X with U ∩ Y = Y \ F . Since X is
L-regular, U is L-regular. Therefore, by the implication (4)⇒(2) in Lemma 7.4, there exist
disjoint clopen upsets V ,W such that y ∈ V and Uc ⊆ W . Thus, V ∩ Y and W ∩ Y are
disjoint open subsets of Y such that y ∈ V ∩ Y and F = Y\U ⊆ W ∩ Y . This implies that
Y is regular. Consequently, Y is compact Hausdorff.

Conversely, let Y be compact Hausdorff. Since X is an SL-space, X is L-compact by
Lemma 6.15. To see that X is L-regular, let U be a clopen upset of X . Suppose y ∈ U ∩ Y .
Since Y is regular, Y\U is closed in Y , and y /∈ Y\U , there exist clopen upsets V ,W such
that V ∩ W ∩ Y = ∅, y ∈ V , and Y\U ⊆ W ∩ Y . Therefore, since X is L-spatial,

V ∩ W = cl(V ∩ Y ) ∩ cl(W ∩ Y ) = cl(V ∩ W ∩ Y ) = cl∅ = ∅,

where the second equality follows from Lemma 4.15. Moreover, Y\U ⊆ W ∩ Y implies
Uc ⊆ W because X is L-spatial. Thus,U is L-regular by Lemma 7.4. This finishes the proof
that X is a KRL-space. ��
Corollary 7.12 KRLPries is equivalent to KHaus.

Proof Apply Corollary 4.19, Lemma 7.9, and Theorem 7.11. ��
We can now derive Isbell duality from Corollaries 7.8 and 7.12:

Corollary 7.13 KRFrm is dually equivalent to KHaus.

We next compare ker with reg. This is reminiscent of the comparison between compact
and complemented elements in frames.

Lemma 7.14 Let X be an L-space.

(1) If U ∈ ClopUp(X) is L-regular, then kerU ⊆ regU.
(2) X is L-compact iff regU ⊆ kerU for every U ∈ ClopUp(X).
(3) If X is a KRL-space, then regU = kerU for every U ∈ ClopUp(X).

Proof (1) Since U is L-regular, cl regU = U . Therefore, kerU ⊆ regU by Lemma 5.2(4).
(2) First suppose that X is L-compact and U ∈ ClopUp(X). We show that V ≺ U

implies V 	 U for every V ∈ ClopUp(X). Let U ⊆ cl(W ) for some open upset W . Then
U∩Y ⊆ W byLemma4.14(1).Moreover, since↓V ⊆ U ,we havemin(↓V ) ⊆ U . Therefore,
min(↓V ) ⊆ U ∩ Y because X is L-compact. Thus, V ⊆ ↑min(↓V ) ⊆ ↑(U ∩ Y ) ⊆ W .
Consequently, V 	 U , and hence regU ⊆ kerU .

Conversely, since reg X = X (see Lemma 7.2), reg X ⊆ ker X implies ker X = X , so X
is L-compact by Lemma 6.10.

(3) This follows from (1) and (2). ��
For the next lemma we recall from Sect. 2 that a subset of a poset is a biset if it is both an

upset and a downset.

Lemma 7.15 Let X be an L-space and Y the localic part of X.

(1) If X is L-compact, then each closed biset is a Scott upset.
(2) If X is L-regular, then each Scott upset is a biset.
(3) If X is L-regular, then Y ⊆ min(X).
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(4) If X is a KRL-space, then closed bisets are exactly Scott upsets.
(5) If X is a KRL-space, then min(X) = Y . Consequently, min(↓F) = ↓F ∩ Y for every

F ⊆ X.

Proof (1) Since X is L-compact, min(X) ⊆ Y . Therefore, for each closed biset F , we have
min(F) ⊆ min(X) ⊆ Y . Thus, F is a Scott upset.

(2) Suppose F is a Scott upset. Let x ∈ ↓F . Then there is z ∈ F with x ≤ z. Since F
is a Scott upset, there is y ∈ F ∩ Y with y ≤ z. If y � x , then there is a clopen upset U
with y ∈ U and x /∈ U . Since X is L-regular, we have ↓↑(U ∩ Y ) ⊆ U by the implication
(4)⇒(3) in Lemma 7.4. Therefore, ↓↑y ⊆ U , so x ∈ U , a contradiction. Thus, we must
have y ≤ x , so x ∈ F , and hence F is a biset.

(3) Let y ∈ Y . Then ↑y is a Scott upset, so ↑y is a downset by (2). Thus, y ∈ min(X).
(4) This follows from (1) and (2).
(5) Since X is a KRL-space, X is L-compact, so min(X) ⊆ Y . The reverse inclusion

follows from (3). Consequently, min(↓F) = ↓F ∩ min(X) = ↓F ∩ Y . ��
Remark 7.16 The frame-theoretic reading of the first part of Lemma 7.15(5) is that in a
compact regular frame the minimal prime filters are exactly the completely prime filters.
This was first observed in [9, Lem. 5.2, 5.3].

Theorem 7.17 Each KRL-space is a StKL-space.

Proof Let X be a KRL-space. We first prove that X is a CL-space. Let U be a clopen upset
of X . By Lemma 7.14(3), regU = kerU , so cl kerU = cl regU = U sinceU is a L-regular.
Therefore, X is a CL-space.

Next let U , V be clopen upsets of X . For each clopen upset W , by Lemma 7.14(3) we
have

W ⊆ kerU ∩ ker V ⇐⇒ W ⊆ regU ∩ reg V ⇐⇒ W ⊆ regU , reg V

⇐⇒ ↓W ⊆ U ∩ V ⇐⇒ W ⊆ reg(U ∩ V )

⇐⇒ W ⊆ ker(U ∩ V ).

Therefore, kerU ∩ ker V = ker(U ∩ V ), and so X is kernel-stable. Since X is a CL-space,
X is Scott-stable by Lemma 6.3(2). Also, because X is a KRL-space, X is L-compact.
Consequently, X is a StKL-space. ��
Theorem 7.18 Let f : X1 → X2 be an L-morphism between L-spaces.

(1) f −1(regU ) ⊆ reg f −1(U ) for each clopen upset U of X2.
(2) If X1 is L-compact and X2 is L-regular, then f is proper.

Proof (1) Suppose x ∈ f −1(regU ). Then f (x) ∈ regU . Therefore, ↓↑ f (x) ⊆ U by
Lemma 7.3(1). Since f is order-preserving, we obtain f (↓↑x) ⊆ U . Thus, ↓↑x ⊆ f −1(U ),
and so x ∈ reg f −1(U ) by Lemma 7.3(1).

(2) LetU be a clopen upset of X2. Since X2 is L-regular,U is L-regular. Therefore, since
X1 is L-compact, by (1) and Lemma 7.14, we have

f −1(kerU ) ⊆ f −1(regU ) ⊆ reg f −1(U ) ⊆ ker f −1(U ).

Thus, f is proper. ��
Remark 7.19 Theorem 7.18(2) corresponds to the well-known fact that every frame homo-
morphism from a compact frame to a regular frame is proper.
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Fig. 2 Equivalences and dual
equivalences between various
categories of frames, L-spaces,
and sober spaces

DLat Pries

Frm LPries

SFrm SLPries Sob

ConFrm ConLPries LKSob

StCFrm StCLPries StLKSp

StKFrm StKLPries StKSp

KRFrm KRLPries KHaus

Putting Theorems 7.17 and 7.18(2) together yields:

Corollary 7.20 KRLPries is a full subcategory of StKLPries.

We thus arrive at the diagram in Fig. 2, where we use the same notation as in Fig. 1. In
addition, the arrow (←→) represents an equivalence of categories. For an overview of the
introduced categories of Priestley spaces see Table 3. The corresponding categories of frames
and spaces are described in Tables 1 and 2.

We conclude the paper by proving that every L-morphism f : X1 → X2 from an L-
compact L-space to an L-regular L-space satisfies ↓ f (x) = f (↓x) for each x ∈ X1. This
result was first proved in [9, Cor. 4.3] utilizing that each frame homomorphism from a regular
frame to a compact frame is closed (see [9, Lem. 4.1]). We give alternative proofs of both
Lemma 4.1 and Corollary 4.3 of [9] using the language of Priestley spaces. We start by the
following two lemmas.

Lemma 7.21 ([9, Rem. 3.7]) Let X be an L-regular L-space and Y its localic part. Then
min(D) = min(D′) implies D = D′ for all clopen downsets D, D′ of X.

Lemma 7.22 Let X1, X2 be L-spaces and Y1, Y2 their respective localic parts. If f : X1 →
X2 is an L-morphism and D is a clopen downset of X1, then

(1) ↓ f (D) is clopen.

If in addition X1 is L-compact and X2 is L-regular, then

(2) min↓ f (D) ⊆ f (D) ∩ Y2.
(3) ↓ f (D) = f (D).
(4) f (D) is a clopen downset.

Proof (1) Since f is a closed map, ↓ f (D) is closed, and hence U := (↓ f (D))c is an open
upset. Because D ∩ f −1(U ) = ∅ and f is an L-morphism,

D ∩ f −1(clU ) = D ∩ cl f −1(U )=∅.

Therefore, f (D) ∩ clU =∅, and so ↓ f (D) ∩ clU =∅ since clU is an upset. Consequently,
↓ f (D) = (clU )c, and hence ↓ f (D) is clopen (because clU is clopen).

(2) Suppose z ∈ min↓ f (D). Then z ≤ f (x) for some x ∈ D. Since D is closed, there is
y ∈ min D with y ≤ x (see Lemma 3.4(5)). Because X1 is L-compact, min D ⊆ min X1 ⊆
Y1. Therefore, y ∈ Y1, and so f (y) ∈ Y2 by Lemma 4.12(1). But then ↑ f (y) is a Scott upset.
Thus, since X2 is L-regular,↑ f (y) is a biset byLemma7.15(2). Consequently, f (x) ∈ ↑ f (y)
implies ↓ f (x) ⊆ ↑ f (y). Therefore, z ∈ ↑ f (y), so f (y) ≤ z. But then f (y) = z by the
minimality of z. Thus, z ∈ f (D) ∩ Y2.
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Table 3 Categories of L-spaces

Category Objects Morphisms

LPries L-spaces (Def. 3.8) L-morphisms (Def. 3.8)

SLPries L-spatial L-spaces (Def. 4.9) L-morphisms

ConLPries Continuous L-spaces (Def. 5.4) Proper L-morphisms (Def. 5.12)

StCLPries Stably continuous L-spaces (Def. 6.5) Proper L-morphisms

StKLPries Stably L-compact L-spaces (Def. 6.12) Proper L-morphisms

KRLPries L-compact L-regular L-spaces (Def. 7.6) L-morphisms

(3) Clearly f (D) ⊆ ↓ f (D). To see the reverse inclusion, since f (D) is a closed sub-
set of X2, it is sufficient to show that ↓ f (D) is the closure of min↓ f (D) because the
latter is contained in f (D) by (2). Suppose otherwise. Since ↓ f (D) is clopen by (1),
↓ f (D)\ clmin↓ f (D) is a nonempty open set. Therefore, by Lemma 3.4(1), there are
U , V ∈ ClopUp(X2) such that ∅ �= U ∩ V c ⊆ ↓ f (D) and U ∩ V c ∩ clmin↓ f (D) = ∅.
Let A = ↓(U ∩ V c) and B = A\(U ∩ V c). Then A �= B. Clearly A is a clopen downset
and B is clopen. We show that B is also a downset and min A = min B. We first show that
B is a downset. Let x ∈ B and y ≤ x . If y /∈ B then y ∈ U ∩ V c. Since x ∈ ↓(U ∩ V c),
there exists z ∈ U ∩ V c such that x ≤ z. Because U is an upset, from y ∈ U and y ≤ x it
follows that x ∈ U . Since V c is a downset, from z ∈ V c and x ≤ z it follows that x ∈ V c.
Therefore, x ∈ U ∩ V c, and so x /∈ B, a contradiction. Thus, B is a downset.

We next show that min A = min B. Clearly min B ⊆ min A. If x ∈ min A, then x ∈
min↓ f (D), so x /∈ U . Therefore, x ∈ min B. Thus, A and B are clopen downsets such that
A �= B but min A = min B. This contradicts Lemma 7.21 because X2 is L-regular.

(4) Apply (1) and (3). ��
Consequently, the same argument as in the proof of [9, Cor. 4.3] yields:

Theorem 7.23 Let f : X1 → X2 be a proper L-morphism between an L-compact L-space
X1 and an L-regular L-space X2. Then f (↓x) = ↓ f (x) for each x ∈ X1.

We recall that a frame homomorphism h : L → M is closed if r(h(a)∨b) ≤ a∨ r(b) for
all a ∈ L and b ∈ M , where r : M → L is the right adjoint of h. We close by an alternative
proof of [9, Lem. 4.1].

Theorem 7.24 If h : L → M is a frame homomorphism from a regular frame L to a compact
frame M, then h is closed.

Proof Let f : XM → XL be the dual L-morphism between the Priestley spaces of M and L ,
respectively. Suppose a ∈ L and b ∈ M . Since XL is L-regular by Lemma 7.7(1), it suffices
to show that

reg r(h(a) ∨ b) ⊆ ϕ(a) ∪ ϕ(r(b)).

Let d ∈ M . Since r is right adjoint to h, we have r(d) = ∨{c ∈ L | h(c) ≤ d}. Therefore,
since ϕ(h(c)) = f −1(ϕ(c)), by Lemma 3.6 we have

ϕ(r(d)) = ϕ
(∨

{c ∈ L | h(c) ≤ d}
)

= cl
(⋃

{ϕ(c) | f −1(ϕ(c)) ⊆ ϕ(d)}
)
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= cl
(⋃

{ϕ(c) | ϕ(c) ⊆ XL \ f (XM \ ϕ(d))}
)

= XL \ f (XM \ ϕ(d)),

where the last equality follows from Lemma 7.22(4). Let x ∈ reg r(h(a) ∨ b). We show that
x ∈ ϕ(a) ∪ ϕ(r(b)). By Lemma 7.3(1),

x ∈ reg r(h(a) ∨ b) ⇐⇒ ↓↑x ⊆ XL \ f
(
XM \ ( f −1ϕ(a) ∪ ϕ(b))

)

⇐⇒ f −1(↓↑x) ⊆ f −1ϕ(a) ∪ ϕ(b).

Suppose x /∈ ϕ(r(b)). Then x /∈ XL\ f (XM\ϕ(b)), so f −1(x) � ϕ(b). Therefore, there is
z /∈ ϕ(b) such that f (z) = x . From f (z) = x it follows that

z∈ f −1(↓↑x)⊆ f −1ϕ(a) ∪ ϕ(b).

Hence, from z /∈ ϕ(b) it follows that z ∈ f −1ϕ(a), and so x = f (z) ∈ ϕ(a), concluding the
proof. ��
Acknowledgements We would like to thank the referees for careful reading and useful suggestions, which
have improved the paper.

Author Contributions The manuscript is written by G. Bezhanishvili and S. Melzer.

Funding No funding was obtained for this study.

Availability of data andmaterials Not applicable.

Declarations

Conflict of interest Both authors declare that they have no conflicts of interest.

References

1. Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke semantics for constructive
S4 modal logic. In: Computer Science Logic (Paris, 2001), Volume 2142 of Lecture Notes in Computer
Science, pp. 292–307. Springer, Berlin (2001)

2. Artemov, S., Protopopescu, T.: Intuitionistic epistemic logic. Rev. Symb. Log. 9(2), 266–298 (2016)
3. Ávila, F., Bezhanishvili, G., Morandi, P.J., Zaldívar, A.: When is the frame of nuclei spatial: a new

approach. J. Pure Appl. Algebra 224(7), 20 (2020)
4. Ávila, F., Bezhanishvili, G., Morandi, P.J., Zaldívar, A.: The frame of nuclei on an Alexandroff space.

Order 38(1), 67–78 (2021)
5. Banaschewski, B.: Coherent frames. In: Proceedings of the Conference on Topological and Categorical

Aspects of Continuous Lattices, LectureNotes inMathematics, vol. 871, pp. 1–11. Springer, Berlin (1981)
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