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Abstract
We use Priestley duality to give a new proof of the Hofmann—Mislove Theorem.
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1 Introduction

Let X be a sober space and L = O(X) the frame of open subsets of X. The Hofmann—
Mislove Theorem [9] establishes that the poset of Scott-open filters of L is isomorphic
to the poset of compact saturated subsets of X. This classic result was proved in 1981
and turned out to be an extremely useful link between topology and domain theory.
Several alternative proofs of the theorem have been established since then (see, e.g.,
[8]). Of these, the proof by Keimel and Paseka [11] is probably the most direct and
widely accepted.

There is a similar result in Priestley duality for distributive lattices [13, 14], which
establishes that the poset of filters of a bounded distributive lattice L is isomorphic to
the poset of closed upsets of the Priestley space X of L. A close look at the two proofs
reveals striking similarities. Indeed, it was pointed out in [3, Remark 6.4] that the two
results are equivalent in the setting of spectral spaces (see Sect. 3 for details).

In this paper we show that we can use Priestley duality to prove the Hofmann—
Mislove Theorem. In fact, we will prove a more general result that the poset OFilt(L)
of Scott-open filters of an arbitrary frame L is isomorphic to the poset of compact
saturated subsets of the space of points of L. This we do by establishing that OFilt(L)
is isomorphic to the poset of the special closed upsets of the Priestley space of L,
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which we term Scott-upsets (see Sect. 5 for details). The Hofmann—Mislove Theorem
is an immediate consequence.

We point out that the Hofmann—Mislove Theorem in this generality was proved in
[18, Theorem 8.2.5] using Zorn’s lemma. Since our new approach relies on Priestley
duality, we only need to use the Prime Ideal Theorem, which is weaker than Zorn’s
lemma.

2 Priestley duality
Let X be a poset. As usual, for § C X, we write

PSS ={xeX:s <xforsomes € S},
JS={x e X:x <sforsomes € S}.

Then S is an upset if S = 1S and a downset if S = | S. If § = {x}, we write ?x and
Jx instead of 1§ and | S.

Let X be a topological space. A subset U of X is clopen if it is both closed and
open, X is zero-dimensional if X has a basis of clopen sets, and X is a Stone space if
X is compact, Hausdorff, and zero-dimensional.

Definition 2.1 A Priestley space is a pair (X, <) where X is a Stone space and < is a
partial order on X satisfying the Priestley separation axiom:
If x £ y, then there is a clopen upset U such thatx € U and y ¢ U.

When it is clear from the context, we simply write X for a Priestley space. Let Pries
be the category of Priestley spaces and continuous order-preserving maps. Let also Dist
be the category of bounded distributive lattices and bounded lattice homomorphisms.

Theorem 2.2 (Priestley duality [13, 14]). Pries is dually equivalent to Dist.

We recall that for D € Dist, the Priestley space of D is the set X of prime filters of
D ordered by inclusion and topologized by the subbasis

{o(a) :a € DYU{o(b) : b € D},

where o : D — g (X) is the Stone map o(a) = {x € X : a € x} and g (X) is the
powerset of X.

Each Priestley space comes equipped with two additional topologies: the topology
7, of open upsets and the topology 7, of open downsets. It is well known that clopen
upsets form a basis for 7. Since clopen upsets are exactly the compact opens of t,,
it follows that (X, t,) is a coherent space (the compact opens form a basis that is a
bounded sublattice of the opens). Similarly, (X, t;) is a coherent space.

In addition, principal downsets | x are exactly the join-irreducible elements in the
lattice of closed downsets. Since closed downsets are the closed sets in (X, 7,,) and | x
is the closure of {x} in (X, 7,), we obtain that (X, 7,) is a sober space (each closed
irreducible set is the closure of a unique point).
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Definition 2.3 A topological space is spectral if it is sober and coherent.

Consequently, both (X, t,,) and (X, 74) are spectral spaces. We callamap f : X —
Y between spectral spaces a spectral map if the inverse image of each compact open
in Y is compact open in X. Let Spec be the category of spectral spaces and spectral
maps. The assignment X — (X, t,) and f — f defines a covariant functor from
Pries to Spec which establishes that the two categories are isomorphic.

Theorem 2.4 (Cornish [5]). Pries is isomorphic to Spec.

Under this isomorphism, closed upsets of a Priestley space X are exactly the com-
pact saturated subsets of the spectral space (X, t,,) (see, e.g., [3, Theorem 6.1]), where
we recall that saturated subsets of (X, 7,,) are exactly the upsets of X (see also Sect. 3).

We conclude this section with the following well-known result in Priestley duality,
which is reminiscent of the Hofmann—Mislove Theorem, and indeed will play a crucial
role in our alternative proof of the theorem.

Let D be a distributive lattice and X its Priestley space. Let Filt(D) be the poset
of filters of D ordered by reverse inclusion. Let also ClUp(X) be the poset of closed
upsets of X ordered by inclusion. We then have (see, e.g., [3, Corollary 6.3]):

Theorem 2.5 Filt(D) is isomorphic to ClUp(X).

The isomorphism is obtained by sending F' € Filt(D) to the closed upset

Kp = ﬂ{a(a) a € F}.
Its inverse sends K € ClUp(X) to the filter

Fx ={ae D:K Co(a)}

3 Hofmann-Mislove for spectral spaces

We recall (see, e.g., [12, p. 10]) that a frame is a complete lattice L satisfying

a/\\/S:\/{a/\s:seS}.

A map h : L — M between two frames is a frame homomorphism if h preserves
finite meets and arbitrary joins. Let Frm be the category of frames and frame homo-
morphisms. The next definition is well known (see, e.g., [11]).

Definition 3.1 Let L be a frame. A filter F of L is Scott-open if \/ S € F implies
\/ T € F for some finite T C S.

Let X be a sober space. We recall that the specialization order on X is defined by
x < yif x belongs to the closure of {y}. A subset S of X is saturated if it is an upset in
the specialization order. Let KSat(X) be the poset of compact saturated subsets of X
ordered by inclusion. Let also OFilt(L) be the poset of Scott-open filters of L ordered
by reverse inclusion.
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Remark 3.2 Ttis more customary to order OFilt(L) by inclusion and KSat(X) by reverse
inclusion (see, e.g., [8, Sect. II-1]). Our ordering is motivated by how we ordered the
posets of filters and closed upsets in Sect. 2.

Theorem 3.3 (Hofmann-Mislove [9]). Let X be a sober space and L the frame of
open subsets of X. Then OFilt(L) is isomorphic to KSat(X).

As was pointed out in [3, Remark 6.4], if X is a spectral space, then the Hofmann—
Mislove Theorem and Theorem 2.5 are simply reformulations of each other. Indeed,
let D be a bounded distributive lattice and let L be the frame of ideals of D. Then L is
a coherent frame [10, p. 64], where we recall that a frame L is coherent if the compact
elements form a bounded sublattice of L that join-generates L.' In fact, sending D
to L defines a covariant functor that establishes an equivalence between Dist and the
category CohFrm of coherent frames and coherent morphisms (where a morphism
is coherent if it is a frame homomorphism that sends compact elements to compact
elements). Under this equivalence, the posets Filt(D) and OFilt(L) are isomorphic.

Let X be the Priestley space of D. By Theorem 2.5, Filt(D) is isomorphic to
ClUp(X). As we pointed out after Theorem 2.4, ClUp(X) = KSat(X, t,). Thus, the
isomorphism of Theorem 2.5 between Filt(D) and ClUp(X) amounts to the Hofmann—
Mislove isomorphism between OFilt(L) and KSat(X, t,). Since (X, t,) is a spectral
space and each spectral space arises this way (up to homeomorphism), we conclude
that the Hofmann—Mislove Theorem for spectral spaces is equivalent to Theorem 2.5.

In what follows we show that we can use Priestley duality to prove the Hofmann—
Mislove Theorem for an arbitrary sober space, and even more generally for an arbitrary
frame. For this we will work with Priestley spaces of frames.

4 Priestley duality for frames

Let L be a frame and X its Priestley space. Since frames are nothing more than
complete Heyting algebras, we can use Esakia duality [6] (see also [7]) to describe
X. Indeed, the dual of a Heyting algebra is a Priestley space that in addition satisfies
JU 1is clopen for each clopen U. Such Priestley spaces are called Esakia spaces.
Therefore, if X is the Priestley space of a frame L, then X is an Esakia space. In
addition, since L is complete, the closure of every open upset of X is open in X (see,
e.g., [2, Theorem 2.4]). Such spaces are called extremally order-disconnected Esakia
spaces. Thus, Priestley spaces of frames are exactly the extremally order-disconnected
Esakia spaces. Since frames are also referred to as locales, we adopt the following
terminology.

Definition 4.1 A localic space or simply an L-space is an extremally order-
disconnected Esakia space.

Remark 4.2 In [16] these spaces are called f-spaces, and in [17] they are called LP-
spaces.

I We recall thata € L is compactifa <\/ Simpliesa < \/ T for some finite 7 C S, and D join-generates
L if each element of L is a join of elements from D.
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We recall (see, e.g., [12, p. 15]) that with each frame L we can associate the space
of points of L, where a point of a frame L is a completely prime filter of L; that is, a
point is a filter F of L such that \/ S € F implies SN F # &. Since each completely
prime filter is prime, we will view the set Y of points of L as a subset of the Priestley
space X of L. By [4, Lemma. 5.1] (see also [17, Proposition 2.9]), we have:

Lemma4.3 Let L be a frame and X the Priestley space of L. Then
Y ={x € X : |xisclopen}.

We thus can define Y in an arbitrary L-space.
Definition 4.4 For an L-space X, let Y = {x € X : |x is clopen}.

Remark 4.5 Since in a Priestley space the downset of a closed set is closed (see, e.g.,
[15, Proposition 2.6]), we have Y = {x € X : | x is open}.

For a frame L, let ¢(a) = {y € Y : a € y}. Itis well known (see, e.g., [12, p. 15])
that {¢(a) : a € L} is atopology on Y. In fact, ¢(a) = o (a) N Y. Thus, the topology
on Y is the restriction of the open upset topology on X (see [1, Lemma 5.3]).

We recall that a frame L is spatial if a % b implies that there is a completely prime
filter F of L suchthata € F and b ¢ F.Equivalently, L is spatial iff L is isomorphic
to the frame of open subsets of Y (see, e.g., [12, p. 18]). By [1, Theorem 5.5], we have:

Theorem 4.6 Let L be a frame, X its Priestley space, and Y C X the set of points of
L. Then L is spatial iff Y is dense in X.

We conclude this section with the following well-known fact (see, e.g., [2,
Lemma 2.3]), which will be used in the next section. As usual, we write cl for closure
in a topological space.

Lemma4.7 Let L be a frame and X its Priestley space. For each S C L, we have

o (\/ S) —d (U a(s)) .

seS

5 Hofmann-Mislove in full generality

The key for obtaining a new proof of the Hofmann—Mislove Theorem using Priestley
duality is the characterization of Scott-open filters of a frame L as special closed upsets
of the Priestley space X of L.

Let K be a closed upset of X. Since K is closed, it is well known (see, e.g., [7,
Theorem. 3.2.1]) that for each x € K there is a minimal point m of K such thatm < x.
Thus, if min K is the set of minimal points of K, then K = 1 min K.

Let F be a filter of L. We recall from Theorem 2.5 that the corresponding closed
upsetis Kp = [{o(a) : a € F}. We will freely use the well-known fact that in a
Priestley space, the downset of a closed set is closed (see Remark 4.5).
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Lemma 5.1 Let L be a frame, X its Priestley space, and Y C X the set of points of L.
For a filter F of L, the following are equivalent.

(1) F is Scott-open.
(2) minKp CY.
(3) For each open upset U of X, from Kr C cl(U) it follows that K C U.

Proof (1)=>(2) Suppose thereis x € min Kg\Y.Then | x isnotopen (see Lemma4.3),
so Uy := ({x)¢ is not closed. Therefore, cl(Uy) N {x # <. But since X is an Esakia
space and U, is an upset, cl(U,) is an upset (see [7, Theorem 3.1.2(VI)]). Thus, since
x is the maximum of | x, we have x € cl(Uy).LetS ={s € L : o(s) C U,}. Because
lx isaclosed downset, U, is an open upset. Therefore, Uy = | J,;.g 0 (s) (see Sect. 2).
Thus,

xedUy) =d (U a(s)) =0 (\/ S)

seS

by Lemma 4.7. Since (min Kr) N |x = {x} and x € o(\/S), we have Kp =
2min Kr C o(\/ S). Therefore, \/ S € F. On the other hand, for each s € S we have
x ¢ o(s). Since for each finite 7 € S, we have o (\/ T) = |J 7 0 (s), we conclude
that x ¢ o(\/ T). Thus, K ¢ o(\/ T), and hence \/ T ¢ F for each finite T C S.
Consequently, F' is not Scott-open.

(2)=(3) Suppose U is an open upset of X such that K C cl(U). Since U is
an open upset, it is a union of clopen upsets, so U = | J;.g 0 (s) for some S C L.
Therefore, K C cl (U;eg 0 (5)). Let y € min K. Then y € Y by (2), s0 |y is open.
Thus, | yNJ,cg 0 (s) # . This means that for each y € min K there is some s € §
such that y € o (s). Consequently,

Kr = 1min Kp gUo(s)zU.

seS

(3)=(1) Suppose \/ S € F for some S C L. Then

kKrco(\/5)=d (Uo(s)).

sES

Therefore, K C USGS o (s) by (3). Since K is closed, it is compact, so there is a
finite 7 € S such that Kp C (e 0(s) =0 (\/ T). Thus, \/ T € F, and hence F is
Scott-open. O

Definition 5.2 We call a closed upset K of an L-space X a Scott-upset or S-upset for
shortif min K C Y.

Remark 5.3 In [17] closed sets satisfying Condition (3) of Lemma 5.1 are called
L-compact sets. Thus, Scott-upsets are exactly the upsets of L-compact sets.

Corollary 5.4 Let L be a frame and X its Priestley space.
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(1) a € L is compact iff o (a) is an S-upset.
(2) L iscompactiffminX C Y.

Proof (1) Observe that a is compact iff ta is Scott-open. Now apply Lemma 5.1.
(2) Since o (1) = X, by (1) we have
L is compact <= 1 is compact <= o (1) is an S-upset &< min X C Y. O

Remark 5.5 While Corollary 5.4(2) is already known (see [4, Lemma 3.1]), our proof
is particularly short.

For an L-space X, let SUp(X) be the subposet of ClUp(X) consisting of S-upsets
of X.

Theorem 5.6 Let L be a frame and X its Priestley space. Then OFilt(L) is isomorphic
to SUp(X).

Proof By Theorem 2.5, Filt(L) is isomorphic to ClUp(X). By Lemma 5.1, this iso-
morphism restricts to an isomorphism between OFilt(L) and SUp(X). O

Theorem 5.7 Let X be an L-space. Then SUp(X) is isomorphic to KSat(Y).

Proof Define f : SUp(X) — KSat(Y) by f(K) = K NY. We show that f is well
defined. By [1, Lemma 5.3], the specialization order on Y is the restriction of the
partial order on X to Y. Therefore, since K is an upset in X, we have that K NY is
saturated in Y. To see that it is compact, let K N'Y C | J ¢ (a;). We have

Uz@) =Jr now@) =ynlJow.

Therefore, K N'Y < (Jo(a;). Since K is an S-upset, min K C Y, so min K C
Jo(a;), and hence K = tmin K C | Jo(a;). Thus, because K is compact in X,
there are ¢;,, ..., a;, such that K C o(a;;) U---Uo(a;,). Consequently, K NY C
¢(aj)U---Uk(a;,), implying that K NY is compact in Y. This yields that f is well
defined, and it clearly preserves C.

Next define g : KSat(Y) — SUp(X) by g(Q) = 1 Q. To see that 1 Q is a closed
upset, let x ¢ £ Q. Then y £ x forall y € Q. By the Priestley separation axiom, for
each y € Q there is a clopen upset Uy of X such that y € Uy, and x ¢ Uy. Therefore,
0 C U},GQ Uy. Since Uy NY isopenin Y, Q is compact in Y, and a finite union of
clopen upsets of X is a clopen upset of X, we can conclude that there is a clopen upset
U of X suchthat Q C U and x ¢ U. Since U is an upset of X, we alsohave 1 Q C U.
Thus, 1 Q is the intersection of clopen upsets of X containing 1 Q, and hence 1 Q is
a closed upset. Consequently, g is well defined, and it clearly preserves C.

Finally, if K is an S-upset of X, then gf (K) = 1 (K NY) =t min K = K; and if
Q is compact saturated in Y, then fg(Q) =10 NY = Q. Thus, f and g are order-
preserving maps that are inverses of each other, and hence SUp(X) is isomorphic to
KSat(Y). O

The Hofmann-Mislove Theorem is now an immediate consequence of Theo-
rems 5.6 and 5.7. But we have proven the stronger result that the Scott-open filters
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of an arbitrary frame L are isomorphic to the compact saturated sets of the space of
points of L. The Hofmann—Mislove Theorem in this generality is established in [18,
Theorem 8.2.5]. The proof uses Zorn’s Lemma, while our proof only relies on the
Prime Ideal Theorem, which is a weaker principle.

Corollary 5.8 (Hofmann—Mislove).

(1) Let L be a frame and Y the space of points of L. Then OFilt(L) is isomorphic to
KSat(Y).

(2) If Y is a sober space and L is the frame of open subsets of Y, then OFilt(L) is
isomorphic to KSat(Y).

Proof (1) Apply Theorems 5.6 and 5.7.
(2) Since Y is sober, Y is homeomorphic to the space of points of L (see, e.g., [12,
p- 20]). Now apply (1). O

We conclude the paper with the following worthwhile consequence. We note that
Corollary 5.9(2) is proved in [18, Lemma 8.2.2] using Zorn’s lemma.

Corollary 5.9 Let L be a frame and X its Priestley space.

(1) A Scott-open filter F is completely prime iff min K r is a singleton.
(2) Every Scott-open filter of L is an intersection of completely prime filters of L.

Proof (1) It is well known and easy to see that a Scott-open filter is completely prime
iff it is prime. Thus, F is completely prime iff min K¢ is a singleton (see, e.g., [3,
Corollary 6.7]).

(2) Let F be Scott-open and a ¢ F. Then Kp g o (a). Therefore, there is
y € minKp with y ¢ o(a). By Lemma 5.1, y € Y, so y is completely prime.
Moreover, F' C y because y € K. Furthermore, a ¢ y since y ¢ o (a). Thus, there
is a completely prime filter y containing F and missing a. Consequently, F is the
intersection of completely prime filters of L containing F. O
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