Journal of Algebra and Its Applications \\’ World Scientific
(2027) 2750005 pages) www.worldscientific.com
(© World Scientific Publishing Company

DOI: 10.1142/50219498827500058

Maximal d-spectra via Priestley duality

Guram Bezhanishvili®@* and Sebastian D. Melzer/ @

Department of Mathematical Sciences
New Mezxico State University, Las Cruces
New Mexico 88003-0001, USA
*quram@nmsu. edu
Tsmelzer@nmsu. edu

Papiya Bhattacharjee

Department of Mathematics and Statistics
Charles E. Schmidt College of Science
Florida Atlantic University, Boca Raton
Florida 33431, USA
pbhattacharjee @fau.edu

Received 18 March 2025
Accepted 31 July 2025
Published 25 September 2025

Communicated by Daniele Mundici

We use Priestley duality as a new tool to study maximal d-spectra of arithmetic frames,
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is compact or Hausdorff. Various necessary and sufficient conditions are given, including
a construction of an arithmetic frame with a unit whose maximal d-spectrum is not
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Keywords: Pointfree topology; Priestley duality; arithmetic frame; d-nucleus; maximal
d-spectrum; compactness; Hausdorffness.

Mathematics Subject Classification 2020: 18F70, 06D22, 06E15, 06F20, 54D10, 54D30

1. Introduction

The space of maximal d-ideals of an archimedean Riesz space with a weak order unit,
equipped with the hull-kernel topology, has been well studied and is known to be a
compact Hausdorff space (see, e.g. [23]). Motivated by this, Martinez and Zenk [28]
initiated the study of d-elements in an arbitrary arithmetic frame. These elements,
denoted dL or Ly, form a sublocale of the arithmetic frame L. The corresponding
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nucleus was coined the d-nucleus. The frame L, and the spectrum max Ly of max-
imal d-elements were further studied by various authors (see, e.g. [13H16]). It is
known that max L, is a compact T3-space provided L has a unit. In [13], it was left
open whether max Ly is Hausdorff. Although some characterizations of the Haus-
dorff separation for max Ly were recently established in [14], the question remained
open. Our aim is to answer it in the negative.

Our main tool is Priestley duality for frames. Priestley originally developed her
duality for bounded distributive lattices [33,|34]. It was restricted to the category of
frames by Pultr and Sichler [36], and later the Priestley spaces of arithmetic frames
were characterized in [11]. Building on this work, we describe the subset Ny of the
Priestley space X of an arithmetic frame L corresponding to the d-nucleus on L. We
also describe the subset Yy of N4 corresponding to the spectrum pt(Lg) of points of
the sublocale L. We show that the minimum of Yy is in a one-to-one correspondence
with the maximal d-elements of L, thus yielding a homeomorphism between min Yy
and max Lg. This allows us to study max L, in the language of Priestley spaces.
Our main results include the description of the nucleus on L whose fixpoints are
the frame of opens of min Yy, the characterization of the soberification of min Yy,
and the construction of an arithmetic frame L with a unit such that minYjy is
not Hausdorff. This yields that max Ly is not Hausdorff, thus resolving the open
question mentioned above. We also give a necessary and sufficient condition for
max Lg to be Hausdorff. This characterization remains valid even if L doesn’t have
a unit, provided max Ly is locally compact. We also investigate the compactness
of min Yy, and hence of max Ly, in comparison with the existence of a unit. Our
approach raises new open questions and highlights the need for further study of
maximal d-spectra of arithmetic frames (see the end of the paper).

The paper is structured as follows. In Sec. [2| we recall Priestley duality for
arithmetic frames, along with useful definitions and results from the literature.
In Sec. we revisit the relationship between nuclei and sublocales, as well as
their description in the language of Priestley spaces. In particular, we show how
to use Priestley duality to give alternative proofs of two existing results in the
literature; Johnstone’s lemma that each Scott open filter arises as the dense elements
of a nucleus and the Isbell Density Theorem. In Sec. [} we characterize inductive
nuclei in the language of Priestley spaces, as well as provide the dual description
of the d-nucleus on an arithmetic frame L. In Sec. |p| we study the maximum of
the localic part of the Priestley dual of L, which yields a new characterization of
when the sublocale L, is regular. In Sec. [f] we delve into the investigation of the
spectrum max Ly of maximal d-elements of an arithmetic frame. We establish a
homeomorphism between max Ly and min Yy, thus providing us with a new tool
to study the maximal d-spectrum of L. We show that the frame of open sets of
min Y, can be realized as a sublocale of L and describe the corresponding nuclear
subset of X. In addition, we prove that the localic part of this nuclear subset is the
soberification of min Yj.
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In Sec. [7} we study the topological properties of min Yy in comparison to what
is known about max L,;. We describe compact subsets of min Yy, which allows us
to characterize when an arithmetic frame has a unit using Priestley duality. This
in particular yields that in the presence of a unit, min Yy is a compact space.

Finally, in Sec. [8] we explore the Hausdorff separation for the space minYy. An
example of an arithmetic frame L with a unit is constructed such that max L, and
hence min Yy is not Hausdorff, thus resolving an open question from [13]. Further-
more, we give a characterization of when min Yy is Hausdorff, which generalizes
to arithmetic frames without units provided min Yy is locally compact. The paper
concludes with several open questions that the authors are looking into to further
the study of min Y.

2. Priestley Duality for Frames

A frame is a complete lattice L such that

a/\\/S:\/{a/\s|s€S}

for alla € L and S C L. A frame homomorphism is a map between frames that
preserves finite meets and arbitrary joins. Let Frm be the category of frames and
frame homomorphisms. A frame L is spatial if it is isomorphic to the frame of opens
of a topological space (equivalently, completely prime filters separate elements of
L). Let SFrm be the full subcategory of Frm consisting of spatial frames.

An element a € L is compact if for each S C L, from a < \/ S it follows that
a < \/T for some finite T C S. Let K(L) be the set of compact elements of L.
Then L is algebraic provided

a=\/{be K(L)|b<a}

for each a € L. It is well known (see, e.g. |28, Remark 3.4]) that every algebraic frame
is spatial. A frame homomorphism h : L — M is coherent if h[K(L)] C K(M). Let
AlgFrm be the category of algebraic frames and coherent frame homomorphisms
between them. An algebraic frame L is arithmetic if K(L) is closed under binary
meets. Let AriFrm be the full subcategory of AlgFrm consisting of arithmetic frames.

A space is zero-dimensional if it has a basis of clopen sets. A Stone space is
a zero-dimensional, compact, Hausdorff space. A Priestley space is a pair (X, <)
such that X is a Stone space and < is a partial order on X such that the Priestley
separation holds:

If x £ y then there is a clopen upset U of X containing z and missing y.

A Priestley morphism is a continuous order-preserving map between Priest-
ley spaces. Let Pries be the category of Priestley spaces and Priestley morphisms.
Let DLat be the category of bounded distributive lattice and bounded lattice
homomorphisms.

Theorem 2.1 (Priestley duality). DLat and Pries are dually equivalent.
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Remark 2.2. The functors 2" : DLat — Pries and Z : Pries — DLat establishing
Priestley duality are described as follows:

e The Priestley space of a bounded distributive lattice D is the set Xp of prime fil-
ters of D ordered by inclusion and topologized by the basis {¢(a)\¢(b) | a,b € D},
where ¢ is the Stone map defined by ¢(a) = {x € Xp|a € x} for all a € D. The
functor 2" assigns to each D € DLat its Priestley space X p, and to each bounded
lattice homomorphism h : D — E the Priestley morphism A~ : X — Xp.

e The functor Z assigns to each Priestley space X the bounded distributive lattice
ClopUp(X) of clopen upsets of X and to each Priestley morphism f : X — Y the
bounded lattice homomorphism f~! : ClopUp(Y') — ClopUp(X).

Definition 2.3. (1) An L-space (localic space) is a Priestley space such that the
closure of each open upset is an open upset.

(2) An L-morphism is a Priestley morphism f : X — Y between L-spaces satisfying
f1(clU) = cl f~1(U) for each open upset U of Y.

(3) LPries is the category of L-spaces and L-morphisms.

Remark 2.4. Recall that frames are precisely complete Heyting algebras. By
Esakia duality [19], the Priestley spaces of Heyting algebras (Esakia spaces) are
those with the property that the closure of each upset is an upset. Moreover, if X
is the Priestley space of a Heyting algebra L, then L is complete iff X is extremally
order-disconnected; that is, the closure of each open upset is open. Thus, L-spaces
are precisely extremally order-disconnected Esakia spaces.

Theorem 2.5 (Pultr-Sichler duality). Frm and LPries are dually equivalent.

Throughout we will use the following well-known facts (see, e.g. |3l [20} [35]).

Lemma 2.6. Let X be a Priestley space.

(1) If F C X is closed, then so are TF and |F.

(2) If F C X is a closed upset, then it is an intersection of clopen upsets.

(3) If F C X is closed, then for each x € F there are m € min F' and n € max F
such that m < x < n, where min F' and max F' denote the sets of minimal and
mazimal points of F, respectively.

If in addition X is an L-space, then we have:

(4) If F C X is closed, then so is max F.
(5) If U C X is clopen, then so is LU.
(6) For {U;} € ClopUp(X),

VU =dlJUi and U = X\L(X\int[)U;).

We next describe the Priestley spaces of spatial, algebraic, and arithmetic
frames.
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Definition 2.7. For an L-space X,

(1) y € X is a localic point if ]y is clopen;

(2) the set Y of localic points of X is the localic part of X;

(3) X is an SL-space (spatial L-space) if Y is dense in X;

(4) SLPries is the full subcategory of LPries consisting of SL-spaces.

Theorem 2.8 (see, e.g. [10, Corollary 4.10]). SFrm and SLPries are dually
equivalent.

Remark 2.9. Let X be the Priestley space of a frame L, and Y the localic part
of X. We topologize Y by {UNY |U € ClopUp(X)}. Then Y is precisely the space
of points of L (see, e.g. [1, Proposition 5.1]).

Definition 2.10. Let X be an L-space and Y its localic part.

(1) A closed upset F C X is a Scott upset if min FF C Y.
(2) ClopSUp(X) is the collection of clopen Scott upsets of X.

Scott upsets play an important role in Priestley spaces of frames as they corre-
spond to Scott open filters on the frame side.

Theorem 2.11 (|9, Theorem 5.6]). Let L be a frame and X its L-space. The
poset of Scott open filters of L is dually isomorphic to the poset of Scott upsets
of X.

Definition 2.12. Let X be an L-space and Y its localic part.

(1) The core of U € ClopUp(X) is coreU = |J{V € ClopSUp(X) |V C U}.

(2) X is an algebraic L-space if core U is dense in U for each U € ClopUp(X).

(3) An L-morphism f : X; — Xo is coherent if f~!(coreU) C core f~1(U) for each
U € ClopUp(X3).

(4) AlglL is the category of algebraic L-spaces and coherent L-morphisms between
them.

Theorem 2.13 (|11, Theorem 4.9]). AlgFrm and AlgL are dually equivalent.
Consequently, every algebraic L-space is an SL-space.

Remark 2.14. Let X be an L-space and U € ClopUp(X). Then coreU = U iff
U € ClopSUp(X), which by [9, Corollary 5.4] is equivalent to U being a compact
element of ClopUp(X). Thus, ClopSUp(X) = K(ClopUp(X)).

Definition 2.15. (1) An arithmetic L-space is an algebraic L-space X such that
core U Ncore V = core(U NV)
for all U,V € ClopUp(X). Equivalently (see, e.g. [11, Lemma 5.2]),
U,V € ClopSUp(X) = U NV € ClopSUp(X).

(2) AriL is the full subcategory of AlgL consisting of arithmetic L-spaces.
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Theorem 2.16 (|11, Theorem 5.5]). AriFrm and AriL are dually equivalent.

3. Priestley Duals for Nuclei and Sublocales

In this section, we recall the relationship between nuclei and sublocales of a frame
L, as well as their dual characterization as nuclear subsets of the Priestley space of
L. Moreover, we give a dual characterization of the admissible filter of a nucleus on
L, which yields an alternative proof of |26, Lemma 3.4(ii)]. Furthermore, we provide
an alternate proof of Isbell’s Density Theorem, which utilizes Priestley duality.

Definition 3.1 (see, e.g. [25), p. 48]). A nucleuson a frame Lisamapj: L — L
satisfying

(1) a < ja,

(2) jja < ja,

(3) janjb=jlanb)

for all a,b € L.

Let N(L) be the set of nuclei on L. We order N(L) pointwise, i.e. j < k iff
jla) < k(a) for all @ € L. With this order, it is well known that N(L) is a frame
(see, e.g. |25, p. 51]).

Definition 3.2 (see, e.g. [31, p. 26]). Let L be a frame. We call S C L a
sublocale of L provided S is closed under arbitrary meets and a — s € § for all
a€Landses.

Let S(L) be the set of sublocales of L. We order S(L) by inclusion. Then S(L)
is dually isomorphic to N(L) (see, e.g. [31, Sec. III-5]). The dual isomorphism
associates with each nucleus j, the sublocale S; := j[L] € S(L); and with each
sublocale S, the nucleus jg given by js(a) = A{s € S|a < s}. Nuclei, and hence
sublocales, dually correspond to nuclear subsets of L-spaces introduced in [37] (see
also [1},|7]):

Definition 3.3. Let X be an L-space.

(1) A subset N of X is a nuclear subset provided N is closed and L(UNN) is clopen
for each clopen subset U of X.
(2) Let N(X) be the set of nuclear subsets of X ordered by inclusion.

Theorem 3.4 (|7, Theorem 30]). Let L be a frame and X its Priestley space.
Then N (L) is dually isomorphic to N(X).

Remark 3.5. The dual isomorphism of the previous theorem is established as
follows: with each j € N (L) we associate the nuclear subset

Nj:={z e X|j ![z] = 2} € N(X),
and with each N € N(X) the nucleus jy € N(ClopUp(X)) given by jyU =
X\J(N\U). Then j := ¢~ o jn o ¢ is the corresponding nucleus on L.
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To simplify notation, we identify N(L) with N(ClopUp(X)). Thus, each
Jj € N(L) is identified with jy,, and hence, for U € ClopUp(X), we have
JU = X\LNAD).

Corollary 3.6 ([37, p. 229]). Let L be a frame and X its Priestley space. Then
S(L) is isomorphic to N(X).

Remark 3.7. Let L be a frame and X its Priestley space.

(1) If j € N(L), then N; seen as a subspace of X is order-homeomorphic to the
Priestley space of the sublocale S; of L (see, e.g. [7, Lemma 25]).

(2) Localic points of X are also known as nuclear points (see, e.g. |1, Definition 4.1]).
This is because y € X is localic iff {y} is a nuclear subset.

(3) By [1, Lemma 4.8], the join in N(X) is calculated by

\/N7 = CIUN,'
for {N;} C N(X).

(4) By , cl Z is a nuclear subset of X for every subset Z C Y of the localic part.

Let j be a nucleus on L. An element a € L is called j-dense provided ja = 1.
Let F; be the set of all j-dense elements of L. It is well known and straightforward
to verify that Fj is a filter of L.

Definition 3.8 (see, e.g. [39]). A filter F' of a frame L is called admissible if it
is of the form F' = Fj for some j € N(L).

Remark 3.9. In [27] admissible filters are called smooth. In |40, Theorem 25.5]
it is shown that a filter is admissible iff it is free, a concept that is now known as
strongly exact (see, e.g. [29]).

Let X be the Priestley space of L. Recalling the well-known correspondence
between filters of L and closed upsets of X (see [35, p. 54] or [5 Corollary 6.3]),
let H; := [ ¢[F;] be the closed upset of X corresponding to F;. To describe the
relationship between N; and H;, we require the following lemma.

Lemma 3.10. Let L be a frame, X its Priestley space, j € N(L), and a,b € L.

(1) ¢(a) N Nj = @(ja) N Nj.
(2) z € p(ja) iff Tz N N; C p(a) N N;j.
(3) ja < jb iff (a) NN; € (b) NN
(4) ja = jb iff p(a) N N; = @(b) NN,
(5) a is j-dense iff Nj C p(a).

Proof. The left-to-right inclusion is clear because a < ja. For the right-to-left
inclusion, suppose = € p(ja) N N;. Then ja € z, s0 a € j~*[z]. But j~![z] = z since
x € Nj;. Consequently, z € ¢(a) N N;.
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Let 2 € X. We have
z € p(ja) & € X\L(N;\¢(a))
&z ¢ L(N;\p(a))
& 1z N (Nj\p(a)) =
& Tz N N; C p(a) N N;.

Suppose ja < jb. Then ¢(ja) C ¢(jb). Consequently,
p(ja) N N; € o(jb) N N;

and so ¢(a) N N; € ¢(b) N N; by (T)). Conversely, suppose ¢(a) N N; C ¢(b) N N;.
It suffices to show that ¢(ja) € ¢(jb). Let = € ¢(ja). Then T N N; C <p(a) N N;
by . Therefore, T2z N N; C ¢(b) N N; by assumption. Thus, x € ¢(jb) by (2).

(4) This follows from .
Suppose ja = 1. Then ¢(ja) = X. Therefore, by (T)),
NjNe(a) = N; Ne(ja) = Nj.
Thus, N; C ¢(a). Conversely, suppose N; C ¢(a). Then ¢(a)NN; = N; = ¢(1)NN;.
Therefore, by 7 ja=jl=1. O

Theorem 3.11. Let L be a frame, X its Priestley space, and j € N(L). Then
H; =1N;.

Proof. Since both H; and TNN; are closed upsets, and hence intersections of clopen
upsets (see Lemma [2.6((2))), it is sufficient to show that H; C o(a) iff TN; C ¢(a)
for each a € L. We have
H; = m pb) Cpla) acFj < ja=1
bEF,

& Nj C p(a) & TN; C o(a),

where the first equivalence follows from compactness and the second to last equiv-
alence from Lemma [3.10](5). |

The following result about Scott open filters was first established in [26,
Lemma 3.4(ii)] using transfinite induction. Since then various alternative proofs
have been obtained (see, e.g. [24, Sec. 5.1] and the references therein). We utilize
Priestley duality to provide yet another alternative proof.

Corollary 3.12. FEwvery Scott open filter of a frame is admissible.

Proof. Let L be a frame and X its L-space. By Theorem [2.11] Scott open filters
correspond to Scott upsets; and by Theorem [3.11] admissible filters correspond to
closed upsets of the form TN for some N € N(X). Therefore, it suffices to show
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that for each Scott upset F, there exists a nuclear subset N C X such that F' = TN.
Let N = cl(FNY). Then N is nuclear by Remark . Moreover, since F' is a
Scott upset, min F C Y, and hence F = tmin F = tcl(FNY) =1N. O

Remark 3.13. Our proof that Scott open filters are admissible relies on
Lemma , which requires the Axiom of Choice. An alternative proof using
only the Prime Ideal Theorem can be found in |12, Remark 5.8].

One of the most studied nuclei is the nucleus of double-negation. For a frame L
and a € L, recall that the pseudocomplement of a is given by

a* =\/{be L|bra=0}.
is the double-negation nucleus, and the corresponding sublocale
B(L):={a€L|la=a""}

is the Booleanization of L (see, e.g. [32, p. 246]).
If j is the double-negation nucleus, then j-dense elements are simply called

*

The map a +— a*

dense (see, e.g. [38, p. 131]). It is well known that the corresponding admissible
filter dually corresponds to max X, and so we have:

Proposition 3.14. Let j be the double-negation nucleus on L.
(1) Hj =max X.
(2) Nj =maxX.

Proof. For see, e.g. |2, Sec. 3]. For observe that and Theorem yield
max X = H; = TN;. Consequently, IV; = max X. O

The following definition is well known. For parts and see, e.g. |25] p. 50]
and for part see, e.g. [4, p. 108].
Definition 3.15. Let L be a frame and X its Priestley space.

(1) y € N(L) is dense if jO = 0.
(2) Se S(L)is denseif 0 € S.
(3) N € N(X) is cofinal if max X C N.

Lemma 3.16. Let L be a frame, X its Priestley space, and j € N(L). The following
are equivalent.

(1) j is dense.
(2) S; is dense.
(3) N; is cofinal.

Proof. The equivalence (1)<(2) is obvious, and (1)<(3) is proved in |7, Theo-
rems 23(2) and 28(2)]. |

Theorem 3.17. Let X be an L-space. Then max X is the least cofinal nuclear
subset.
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Proof. By Proposition [3.14{[2]), max X is a nuclear subset of X, and clearly it
is the least such containing max X. Thus, it is the least cofinal nuclear subset
of X. a

As a consequence, we obtain the following well-known result of Isbell (see, e.g.
[31, p. 40]):
Corollary 3.18 (Isbell’s Density Theorem). For a frame L, the Booleanization
SB(L) is the least dense sublocale of L.

Proof. Let S; C L be a dense sublocale. Therefore, N; is cofinal by Lemma
and so max X C N; by Theorem Consequently, B(L) C S; by Corollary

and Proposition 3.142). |

4. Priestley Duality for the d-Nucleus

In this section, we describe Priestley duals of inductive nuclei, introduced and
studied by Martinez and Zenk [28]. We use the Priestley duality tools from previous
sections to study the most prominent inductive nucleus, known as the d-nucleus.
Among other things, we characterize the nuclear set Ny corresponding to the d-
nucleus, and its localic part Yj.

Definition 4.1 (|28, Sec. 4]). A nucleus j on an algebraic frame L is inductive
if for all @ € L we have

ja=\/{jk|k € K(L) and k < a}.

Let X be the Priestley space of L. As we pointed out after Remark [3.5] we iden-
tify N (L) with N(ClopUp(X)), so for each j € N(L) there is a unique N € N(X)
such that j U = X\[(NV\U) for each U € ClopUp(X).

Definition 4.2. Let X be an L-space. For j € N(ClopUp(X)) and U € ClopUp(X),
define the j-core of U by

core,; U = U{jV |V € ClopSUp(X) and V C U}.

Remark 4.3. Let j be a nucleus on an arithmetic frame L and let X be the
Priestley space of L. Then X is an arithmetic L-space by Theorem Therefore,
for all clopen upsets U,V of X,

core; U Ncore; V = | J{j U’ |U’ € ClopSUp(X), U’ C U}
N J{G V|V’ € ClopSUp(X), V' C U}
=G nv") U,V € ClopSUp(X), U' C U, V' C V}
= JUW |W € ClopSUp(X), W cUNV}
= core; (U NV),
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where the second to last equality is a consequence of X being an arithmetic L-space

(see Definition [2.15([1))).

Definition 4.4. Let X be an L-space. We call N € N(X) inductive if 1(F N N) is
a Scott upset for each Scott upset F' of X.

As the name suggests, a nuclear subset is inductive iff its corresponding nucleus
is inductive. To prove this, we recall the following:

Lemma 4.5. Let X be an L-space and Y its localic part.

(1) (|9, Lemma 5.1)) A closed upset F of X is a Scott upset iff F C clU implies
F CU for all open upsets U of X.

(2) (J10, Lemma 4.14]) Let y € Y and U be an open upset of X. Then y € U iff
yeclU.

Theorem 4.6. Let X be an algebraic L-space and N € N(X). The following are
equivalent.

(1) N is inductive.
(2) jn U = clcorej, U for all U € ClopUp(X).
(3) jn is inductive.

Proof. = Let U € ClopUp(X). Clearly, clcore;, U C jy U. For the other
inclusion, since Y is dense in X (every algebraic L-space is an SL-space), it is
sufficient to show that jx(U) NY C core;, U. Suppose that y € jn(U) NY. Then
Tty NN C U by Lemma [3.102). Since ty is a Scott upset and N is inductive,
T(ty N N) is a Scott upset. But

T(tyNN) C U =clcoreU

and hence 1(fy N N) C coreU by Lemma |.5|1)). Therefore, since finite unions
of clopen Scott upsets are clopen Scott upsets, by compactness there exists
V € ClopSUp(X) such that fy " N C V and V C U. Thus, y € jyV by
Lemma , and so y € core;, U, proving that jx(U)NY C core;, U.

= (1)) Let F be a Scott upset and 1(FNN) C clU for some open upset U. Since
X is an L-space, U’ = clU € ClopUp(X). Let y € min F. Then

tyNN CHFAN) C U,

so y € jnU' by Lemma B.I0J2). Therefore, y € clcore;, U’ by (2), and hence
y € corej, U’ by Lemma [45(2). Thus, there is V,, € ClopSUp(X) such that
y€jnV,and V, CU'. We have F = 1min F C |J{jn~ V, |y € min F'}, so by com-
pactness there are Vi,...,V, € ClopSUp(X) such that F C jy Vi U--- U jny Vp.
Let V. =ViU---UV,. Then V € ClopSUp(X). Furthermore, F' C jNV since jy
is order-preserving, and clearly V' C U’. The latter together with Lemma
yields that V' C U. Since F C jyV, we have FNN C jy(V)NN =V NN by
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Lemma [3.10f|1). Consequently, 7(F'NN) C U, and hence 1(F N N) is a Scott upset
by Lemma [4.5((1]).

= Observe that
jn is inductive < jy U = \/{jy V|V € K(ClopUp(X)) and V < U}.

But K(ClopUp(X)) = ClopSUp(X) (see Remark and /U = clJU for
U C ClopUp(X) (see Lemma [2.6{[6]) ). Therefore,

\/{in V|V € K(ClopUp(X)) and V < U} = clcore;, U.
Consequently, jx is inductive iff U = clcore;, U for all U € ClopUp(X). |
A prominent example of an inductive nucleus is the so-called d-nucleus, intro-

duced by Martinez and Zenk |28, Sec. 5] as a frame-theoretic tool to study d-ideals
of Riesz spaces (see [23; 28, Remark 5.6]).

Definition 4.7. Let L be an algebraic frame.

(1) Define d: L — L by da = \/{k** |k € K(L) and k < a} for all a € L.
(2) We call a € L a d-element if da = a.

We write Ly for the fixpoints of d.
Theorem 4.8 ([28, Sec. 5]). Let L be an algebraic frame.
(1) d is a closure operator on L.
If in addition L is arithmetic, then

(2) d is an inductive dense nucleus on L.
(3) Lg is a dense sublocale of L and is an arithmetic frame.

We next describe the nuclear subset Ny of the Priestley space of L corresponding
to the sublocale L4. As in Remark [3.7|(1]), for each nucleus j on a frame L, we view
the corresponding nuclear subset IV; as the Priestley space of the sublocale L;.

Proposition 4.9. Let L be a frame, X its Priestley space, and Y the localic part
of X.

(1) If j € N(L), then N;NY is the localic part of Nj.
If in addition L is an arithmetic frame, then

(2) Ny is a cofinal inductive nuclear subset of X.
(3) Ny is an arithmetic L-space.
(4) Ny = Cl(Nd N Y)

Proof. Let Y; be the localic part of N;. We need to show that Y; = N; NY.
It is straightforward to see that N; N'Y C Yj. It remains to show that Y; C V.
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Suppose y € Y;. Then |y N NN; is clopen in INV;. Therefore, there is clopen U C X
such that |y N N; = U N N;. Since N; is a nuclear set, [(U N N;) is clopen in X.
But [(UNN;) =l(lyNN;) = ly because y € N;. Thus, y € Y.

Apply Theorems [4.8|(2) and and Lemma

Since L is arithmetic, so is Ly by Theorem [4.8([3]). Therefore, the result follows
from Theorem because Ny is the Priestley dual of Lg.

NqaNY is the localic part of Ny by (1), and Ny is an SL-space by (3)). Hence,
Cl(Nd n Y) = Ng. O

Let X be an arithmetic L-space. Since ClopSUp(X) = K (ClopUp(X)) (see Re-
mark [2.14]), d : ClopUp(X) — ClopUp(X) is given by

dU = cl|_{V*"|V € ClopSUp(X) and V C U},
where V* = X\|V (see, e.g. |20, p. 20]), so z € V** iff tz C [V. We also recall
(see Definition that the d-core of U € ClopUp(X) is given by

coreg U = U{dV |V € ClopSUp(X) and V C U}.

Lemma 4.10. Let L be an arithmetic frame, X its Priestley space, and Y the
localic part of X.

(1) If U € ClopSUp(X), then dU = U**.
(2) If U € ClopUp(X), then x € coreq U iff T C | coreU.

Proof. dU = c|J{V*|V € ClopSUp(X)and V. C U} = U** since
U € ClopSUp(X).

First suppose that « € coreq U. Then there is V' € ClopSUp(X) with € dV
and V C U. Therefore, z € V** by 7 which means that Tz C |V. Since V is a
Scott upset, V' C U implies V C coreU. Thus, x € dV implies Tz C | core U. For
the converse, if Tx C | core U, then

12 C | [ J{V € ClopSUp(X) |V C U} = | J{IV |V C U and V € ClopSUp(X)}.

Hence, by Lemma [2.6|(5), {1V |V C U and V € ClopSUp(X)} is an open cover of
1. Since Tz is compact and this open cover is directed, there is V' € ClopSUp(X)
such that V- C U and o C |V. This yields that z € V** so z € dV by .
Consequently, = € coreg U. O

Let X be an arithmetic L-space and Y its localic part. We let Y; denote
the localic part of Ny. By Proposition [LY(I), Yo = Ny N'Y. We conclude the
section by giving several characterizations of Y;. For this we need the following
lemma.

Lemma 4.11. Let X be an algebraic L-space and F a Scott upset of X. Then
F = {U € ClopSUp(X) | F C U}.
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Proof. Since F is a closed upset, F = ([{U € ClopUp(X)|F C U} (see
Lemma [2.6{[2) ). Thus, it suffices to show that for each U € ClopUp(X) with F C U,
there is V' € ClopSUp(X) with F C V C U. Since X is an algebraic L-space,
U = clcoreU, so F C U implies that F' C coreU by Lemma . Now apply
compactness to obtain the desired V. O

Theorem 4.12. Let L be an arithmetic frame, X its Priestley space, and Y the
localic part of X. For y € Y, the following are equivalent.

(1) y €Yy

(2) YU € ClopUp(X), y € coreqU = y e U.
(3) VYV € ClopSUp(X), maxty CV — ye V.
(4) {y} =max(lzNY) for some z € max X.

Proof. :> If y € coreqU, then y € dU. Therefore, since y € Y; C Ny,
Lemma implies that y € U.

= Suppose max Ty C V. Then Ty C |V. Since V is a clopen Scott upset,
V = coreV by Remark Therefore, |V = | coreV, and hence y € coreg V' by

Lemma . Thus, y € V by .

= (4) Suppose that for every x € max?ty there is y’ € la NY with y <y’ < .
Theny’ £y, so Lemmaimplies that there is V,, € ClopSUp(X) with ' € V,, and
y € V,,. Therefore, maxty C |JV,, and since max Ty is closed (see Lemma [2.6{}4]))
and the open cover is directed, there is V' € ClopSUp(X) containing max Ty and
missing y, a contradiction.

= It is sufficient to show that da € y implies a € y for each a € L, and
hence it is enough to show that y € dU implies y € U for each U € ClopUp(X).
Let y € dU. Then y € clcorey U since d is inductive. Therefore, y € coreq U by
Lemma [4.5([2). Thus, by Lemma[4.10|(L), y € dV = V** for some V € ClopSUp(X)
with V' C U. Hence, Ty C [V. By , there is € max X with {y} = max(JzNY).
But then x € V, and since V is a Scott upset, there is ' € V NY with ¢/ < z.
Consequently, v/ <y, andsoy €V C U. |

5. maxY and Regularity of Ly

Martinez and Zenk 28| Proposition 5.2] characterized when Ly is a regular frame. In
this section, we give several alternative characterizations, utilizing Priestley duality.
This, in particular, involves the maximal spectrum maxY of the localic part Y of
the Priestley space of L. As a consequence, we obtain that L4 is regular iff Ly is
locally Stone.

Recall (see, e.g. [31, p. 89]) that a frame L is regular if for all a € L we have

a:\/{bEL\b*\/azl}.
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Priestley spaces of regular frames were studied in |6} [10L |36]. We recall:
Definition 5.1 (|10, Definitions 7.1 and 7.6]). Let X be an L-space.
(1) For U € ClopUp(X), the regular part of U is
regU = U{V € ClopUp(X) |V CU}.
(2) X is L-regular if clregU = U for each U € ClopUp(X).
Theorem 5.2. Let L be a frame, X its Priestley space, and Y the localic part of X.

(1) |6l Lemma 3.6] L is regular iff X is L-regular.

(2) |10l Proof of Theorem 7.11] If X is an SL-space and Y is regular, then X is
L-regular.

(3) |10l Lemma 7.15(3)] If X is L-regular, then ¥ C min X .

An element p # 1 of a frame L is (meet-)prime if aAb < p impliesa <porb <p
(see, e.g. [31], p. 13]). A prime element p is minimal prime with respect to a € L if
p is minimal among the primes ¢ > a. It is known (see, e.g. [30, p. 264]) that every
prime element p greater than a € L has a minimal prime element ¢ with respect to
a beneath it. Since the assignment p — L\]p establishes an isomorphism between
the posets of prime elements and completely prime filters (see, e.g. |31} p. 14]), this
condition can equivalently be formulated as follows: for every completely prime
filter P contained in a filter F, there exists a completely prime filter ) that is
maximal among the completely prime filters contained in F'. Thus, we arrive at the
following lemma, which gives the means to find (relatively) maximal localic points.

Lemma 5.3. Let L be a frame, X its Priestley space, Y the localic part of X, and
yevY.

(1) tyNmaxY # @.
(2) ty Nmax(lx NY) # & for every x € X withy < x.
Proof. For take P =y and F = L, and for take P =y and F = . O

We show that max Y C Yy, but that the converse is not true in general. For this
we require the following lemma.

Lemma 5.4. Let L be an arithmetic frame, X its Priestley space, and Y the localic
part of X.

(1) If F and G are Scott upsets of X, then so is FNG.
(2) Suppose y € maxY and F is a Scott upset of X. If ftyNF # &, theny € F.

Proof. This can be seen by applying [11, Lemma 5.2; 10, Lemma 6.3(2)]. To
keep the proof self-contained, we give a short argument. By Lemma [{.11] F and
G are intersections of down-directed families of clopen Scott upsets. Therefore, so
is F'N G since the binary intersection of clopen Scott upsets is a clopen Scott
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upset (X is an arithmetic L-space). Thus, F' N G is a Scott upset because the
intersection of a down-directed family of clopen Scott upsets is a Scott upset (see
[10, Lemma 5.14(1)]).

Since Ty N F is a nonempty closed upset, min(ty N F) # & (see, e.g. |20,
Theorem 3.2.1]). Because 1y, F' are Scott upsets, 1y N F is also a Scott upset by
(1)). Therefore, min(ty N F) C Y. Since y is underneath each point in min(ty N F)
and y € max Y, we conclude that min(fy N F') = {y}, and hence y € F. O

Theorem 5.5. Let X be an algebraic L-space and Y its localic part.

(1) If N C X is a cofinal inductive nuclear subset, then maxY C N.
(2) If X is the Priestley space of an arithmetic frame L, then maxY C Y.

Proof. Let y € max Y. Since Ty is a Scott upset and N is inductive, 1(fy N N)
is a Scott upset. Because N is cofinal, max X C N, and thus TyNN # @&. Therefore,

T(ty N N) C 1y is a nonempty Scott upset, so y € 1(Ty N N) by Lemma [5.4{[2).
Hence, Ty C 1(ty N N). Consequently, Ty = 1(Ty N N), and so y € N.

(2) By Proposition 4.9(|2)), V4 is a cofinal inductive nuclear subset of X . Therefore,
maxY C Ny by , and so maxY C Yy by Proposition 4.9(1). |

Example 5.6. To see that in general maxY # Yy, let SN be the Stone Cech
compactification of the natural numbers (see, e.g. [18| p. 174]). As is customary, we
write N* for the remainder. Let X = SN U {y}, where the order on X is defined as
shown in Fig. [Tfa). It is well known (see, e.g. [L7} p. 28]) that SN is homeomorphic
to the Stone space of the powerset ©(N) of N. Therefore, X is homeomorphic to the
Priestley space of the lattice L obtained by adding a new top to p(N); see Fig. [1{b).
Since p(N) is an arithmetic frame and 1 € K (L), it is clear that so is L, and hence
X is an arithmetic L-space.

Because the set of isolated points of X is N U {y}, we have that |z is clopen
iff 2 is an isolated point of X. Thus, the localic part of X is Y = NU {y}. There-
fore, maxY = N. On the other hand, y € Ny by Theorem , so Yy, =Y.
Consequently, Yy # max Y.

Y

(a) The Priestley space SN U {y}. (b) The lattice p(N) with a new top.

Fig. 1. An arithmetic L-space in which Yy # maxY.
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In order to characterize when Ly is regular, we require the following lemma,
which allows us to separate Scott upsets from maximal localic points via clopen
Scott upsets.

Lemma 5.7. Let X be an arithmetic L-space, Y its localic part, and F' a Scott upset
of X. If y € max Y\ F, then there is U € ClopSUp(X) withy € U and UNF = &.

Proof. Since y ¢ F, we have TyNF = @ by Lemma . Therefore, Lemma
yields that ({U € ClopSUp(X) |y € U}NF = &. Thus, we can use compactness and
the fact that finite intersections of clopen Scott upsets are again Scott upsets (X is
an arithmetic L-space) to produce U € ClopSUp(X) withy e U and UNF = &. 0O

We recall that a space X is locally Stone if X is zero-dimensional, locally com-
pact, and Hausdorff. Thus, X is locally Stone if in the definition of a Stone space
we weaken compactness to local compactness. A frame L is locally Stone if it is
isomorphic to the frame of opens of a locally Stone space. By [8, Theorem 3.11],
a frame is locally Stone iff it is algebraic and zero-dimensional (each element is a
join of complemented elements). We will use the following fact: if L is an algebraic
frame and X its Priestley space, then the localic part Y of X is locally compact
(see |10, Theorem 5.10], where the result is proved in the more general setting of
continuous frames).

Theorem 5.8. Let L be an arithmetic frame, X its Priestley space, and Y the
localic part of X. The following are equivalent.

(1) Lg is regular.

(2) Ng is L-regular.

(3) Yy is an antichain.

(4) maxY =Y.

(5) Yy is a locally Stone space.
(6) Lg is a locally Stone frame.

Proof. & This is immediate from Theorem [5.2|(1)) since Ny is the Priestley
space of Lg.

= If Ny is L-regular, then Yy C min Ny by Theorem |5.2|(3)). Therefore, Yy is
an antichain.

= By Theorem [5.5((2), maxY C Y. For the converse, suppose y € Yy. By
Lemma [5.3{[1)), there is ¢’ € maxY Nty. Then ¢y € maxY C Yy, so y = ¢ since Yy
is an antichain by . Thus, y € maxY.

4) = Since L is arithmetic, Ly is arithmetic by Theorem [4.8(|3)). Therefore, as
we pointed out above, Yy is locally compact. Recall (see Remark that open
subsets of Yy are exactly the sets of the form UNYy for U € ClopUp(X). Hence,
implies that open subsets are the sets of the form U NmaxY . By Lemma,

UNmaxY = cl(coreU) NmaxY = coreU NmaxY.
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Thus, to see that Y is zero-dimensional, it is enough to show that U N maxY is
clopen for each U € ClopSUp(X). For this it is sufficient to show that for each
y € max Y\U there is V' € ClopSUp(X) with y € VN maxY C maxY\U. But this
follows from Lemma [5.7] Finally, to see that Yy is Hausdorff, let 3,7’ € Yy = maxY
be distinct. Then y € 1y, so by Lemma there is U € ClopSUp(X) such that
y €U and ¢y € U. But then y € U NYy, which is clopen by the above.

& @ Because L, is spatial and Yy is the space of points of Ly (see Remark,
L is isomorphic to the frame Q(Y;) of open subsets of Y. Therefore, Yy is locally
Stone iff Ly is locally Stone by |8, Theorem 3.11].

= ([2) Since Yy is locally Stone, Yy is regular. Hence, Ny is L-regular by Theo-
rem [5.2([2]). O

6. Spectra of Maximal d-Elements

In this section, we begin our investigation of the spectrum max L; of maximal
d-elements of an arithmetic frame L, as introduced in [13]. First, we show that
max Lg is in a bijective correspondence with minYy. Following this, we establish
that min Yy, viewed as a subspace of Y, is homeomorphic to max L;. The homeo-
morphism enables us to analyze the properties of max Ly through min Y;. We show
that the frame Q(min Yj) of open subsets of min Y, can be realized as a sublocale of
L, and describe the corresponding nuclear subset of X. We conclude the section by
observing that the localic part of this nuclear subset is the soberification of min Y.

Definition 6.1. Let X be an arithmetic L-space and U € ClopUp(X).

(1) We call U a d-upset if clcoreq U = U.
(2) We call U a maximal d-upset if it is maximal among proper d-upsets of X.

Remark 6.2. Since d is inductive, it is straightforward to verify that (maximal)
d-elements of an arithmetic frame correspond to (maximal) d-upsets of its Priestley
space.

We now show that maximal d-upsets are in one-to-one correspondence with
elements of min Yy. For this, we require the following lemmas.

Lemma 6.3. Let X be an arithmetic L-space and U € ClopUp(X). Then
clecoreaU =X iff Y CU.

Proof. Since d is inductive, clcoregU = X iff dU = X (see Theorem [L.6][2)). It
follows from Lemma [3.10|[5) that dU = X iff Ny C U. But by Proposition |4.9(}4),
Ng=clYy, so Ng CU iff Y; C U since U is closed. O
Lemma 6.4. Let X be an arithmetic L-space and y € Yy.

(1) X\ly is a d-upset.

(2) X\ly is a mazimal d-upset iff y € minYy.
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(3) Mazimal d-upsets are exactly the clopen upsets of the form X\ly for some
Yy € minYy.

Proof. We need to show X\]y = clcores(X\ly). For this it suffices to show
that YN (X\Jy) = Y Ncoreg(X\|ly) since X is an SL-space. We have Y N (X \]y) C
Y N coreq(X\Jy) since Y NU =Y NcoreU and coreU C coreg U for each clopen
upset U. For the reverse inclusion, let z € Y and suppose towards a contradiction
that z € coreq(X\ly) and z € X\]y. Then z < y, so y € coreq(X\|y). Therefore,
y € X\ly by Theorem [1.12] (y € Yy), a contradiction.

Suppose y € min Y. Then there exists y’ € Yy with ¢y < y. Therefore, there ex-
ists V' € ClopUp(X) containing y and missing y'. Let U = clcoreqs(V U (X\ly)).
Then U is a d-upset and X\Jy C U because y € U and y ¢ X\ly. But
U = clcoreq(V U (X\ly)) # X by Lemma since ¢y’ € Yy and ¢’ ¢ V U (X\]y),
yielding that Y; € V' U (X\J)y). Thus, X\]y is not a maximal d-upset.

Suppose y € minY, and X\]ly C U for a d-upset U. Then y € U, and since
y € minYy we get Yy C (X\ly) U {y} C U. Therefore, U = clcore,U = X by
Lemma
By it suffices to show that every maximal d-upset is of the desired form,
so suppose U € ClopUp(X) is a maximal d-upset. Then clcoreaU = U # X, so
Y, & U by Lemma Therefore, there exists y € Yy\U. Then ly N U = &, so
U C X\ly # X. But X\]y is a d-upset by (I). Hence, U = X\|y since U is a
maximal d-upset. Thus, y € min Yy by . a

As an immediate consequence, we obtain:

Theorem 6.5. Let X be an arithmetic L-space. The map y — X\]y is a bijection
from min Yy to the collection of maximal d-upsets of X.

Equipping Y; with the subspace topology inherited from Y, we have:
Theorem 6.6. min Y, is homeomorphic to max L.
Proof. Since ¢ : L — ClopUp(X) is an isomorphism, define « : minY; — max Ly
by a(y) = ¢~ (X \}y). By Theorem « is a bijection. Thus, it suffices to show

that for all U C minYy we have U is open iff «(U) is open. Now, U is open iff
U =V NminYy for some V € ClopUp(X), and «(U) is open iff

a(U)={m e maxLi|a £ m}

for some a € L (see, e.g. |13, Sec. 3]). Since m € max(Lg) iff ¢p(m) is a maximal
d-upset, by Lemma [6.4{(3)) we have that m € max(Ly) iff ¢(m) = X\]y for some
y € min Y. Moreover, for a € L, we have that ¢(a) € X\]y iff y € p(a). Therefore,

a(U) ={m € max Lq|a £ m} & pla(U)] = {p(m) [ p(a) £ o(m)}
< ¢laU)] = {X\lyly € minYy, ¢(a)  X\ly}
< U={yeminY;|y € pla)} = U =¢(a) NminYy. O
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As we pointed out in the introduction, if L is an arithmetic frame with a unit
(see the beginning of Sec. 7 then max L4 is a compact Ti-space. We next show
that being T} does not depend on the existence of a unit.

Proposition 6.7. minYy is T7.
Proof. Suppose y,y' € minYy are distinct. Then y £ ¢’ since minYy is an
antichain. By Priestley separation, there exists U € ClopUp(X) with y € U

and y' ¢ U. Hence, U N minYjy is an open subset of minY, containing y and
missing 3/. O

We now concentrate on the frame Q(min Yy) of open subsets of min Y; and show
that it can be realized as a sublocale of L. To this end, since L is isomorphic to
ClopUp(X), we introduce a nucleus on ClopUp(X) that determines (min Yy).

Lemma 6.8. The map h : ClopUp(X) — Q(minYy), given by h(U) = U N min Yy,
is an onto frame homomorphism.

Proof. It is clear that h is onto and preserves finite meets. To see that it preserves
arbitrary joins let {U;} C ClopUp(X). Then, by Lemma [4.5([2),

h (\/ Ui) = (CIU Ui) NminY,; = (U UZ-> N min Yy
= | Jwi nminYy) = | Jr(W). o

By the previous lemma, there is a nucleus p = h, o h : ClopUp(X) — ClopUp(X),
where h, is the right adjoint of h (see, e.g. [31, p. 31]). Then, for each
U € ClopUp(X),

p(U) = \/{V € ClopUp(X) | (V) C h(U)}
= cl{_{V € ClopUp(X) |V Nmin Y, C U Nmin Yy}
= cl| J{V € ClopUp(X) |V NminY, C U}.
Lemma 6.9. Let L be an arithmetic frame and X its L-space. For a € L set
M, = /\{m € max Lgq|a < m}.
Then (A Ma) = p(p(a)).

Proof. Observe that

v (/\ Ma)

<p<\/{b€L|b§mforallm6Ma})

= clU{V € ClopUp(X) |V C ﬂ(p[Ma]}

Recall that m € max Lq iff ¢(m) is a maximal d-upset. Thus, using Lemma |6.4{(3),
we obtain that m € M, iff ¢(m) = X\|ly for some y € minYy\¢(a).
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Therefore,
N elMa] = ({X\ly|y € minYa\p(a)} = X\|(min Ya\@(a)).
Consequently, since V' is an upset,
V C(¢lM,] & V € X\[(min Yy\p(a))
< VNl(minYy\e(a)) =@
< VN (minYy\e(a)) =2
< VNminYy; C p(a),
and the result follows from the above description of p. O
Remark 6.10. By the previous lemma, the nucleus p can be defined on an arbitrary
arithmetic frame L by
pla) = \m € max Ly|a < m}
for each a € L.

We now describe the nuclear subset of X corresponding to the nucleus p. For
this we use the following:

Theorem 6.11. Let L be an arithmetic L-space. Then N, = clmin Yj.

Proof. By Remark [3.7||4)), clminYy is a nuclear subset of X. Let j € N(L) be
the nucleus associated with clminY, (see Remark . It suffices to show that

v(j(a)) = p(p(a)) for all a € L.

(C) Let = € ¢(j(a)). Then 1z N clminYy C ¢(a) by Lemma [3.10|[2). Since 1z is a
closed upset, it is an intersection of clopen upsets (see Lemma ) Therefore,
by compactness, there is V' € ClopUp(X) such that © € V and VNelmin Yy C ¢(a).
Thus, V Nmin Yy C p(a), and so = € p(¢(a)).

(2) By Lemma [4.5([2),
plp(a)) NminY, = ClU{V € ClopUp(X) |V NminYy C ¢(a)} NminYy
= U{V € ClopUp(X) |V NminYy C ¢(a)} NminYy C p(a).
Therefore, since ¢(a) is closed,
plp(a))NclminYy C cl(p(e(a)) NminYy) C p(a).
Thus, for each = € p(¢(a)),
Tz NclminYy C p(e(a)) NelminYy C ¢(a).
Consequently, = € ¢(ja) by Lemma. |
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We conclude this section by describing the link between min Yy and the localic
part of N,.

Proposition 6.12. The localic part Y, of N, is the soberification of minYy.

Proof. The localic part of any L-space is the space of points of the associated
frame (see Remark . Thus, Y, is the space of points of Q(min Yy), which is the
soberification of min Yy (see, e.g. [25} p. 44]). |

7. Compactness of the Maximal d-Spectrum

We now turn our attention to studying topological properties of minYy. As we
mentioned in the introduction, in [13] the second author only considered arithmetic
frames with a wnit; that is, a compact dense element, where we recall (see the
paragraph before Proposition that an element a € L is dense if a** = 1. In
this section, we characterize units in the language of Priestley spaces and compare
the existence of a unit to compactness of min Yj.

We start by characterizing compact subsets of min Yy in terms of special Scott
upsets of X.

Definition 7.1. Let X be an arithmetic L-space and Y its localic part. A subset
Z C X is called d-initial if ZNY CH(Z NminYy).

Lemma 7.2. Let X be an arithmetic L-space and Y its localic part.

(1) A Scott upset F C X is d-initial iff F = T(F NminYy).
(2) If F C X is a d-initial Scott upset, then F NminYy is compact.
(3) If K C minYy is compact then 1K is a d-initial Scott upset.

Proof. The right-to-left implication is immediate. For the left-to-right impli-
cation, let F' be a d-initial Scott upset. Then min ¥ C FNY C 1(F NminYy), and
hence F' = tmin F' = 1(F Nmin Yy).

Suppose that F NminYy C J(U; N minYy) for a family {U;} C ClopUp(X).
Then FNminY; C YU;, and so F C |JU; by . Since F' is closed, it is compact,
and hence FF C U;, U---UU,;, for some i1,...,4,. Therefore,

FNnminYy; C (U;; NminYy) U--- U (U;, NminYy),
and hence F' N min Yy is compact.

Clearly, TK is d-initial. Thus, it suffices to show that 1K is a Scott upset. Since
minTK = K C minYjy, it is enough to show that 1K is closed. Let 2 ¢ 1K . Then
y £ x for all y € K. By Priestley separation, there is U, € ClopUp(X) such that
y € Uy and z ¢ U,,. Therefore, K C |J(U, NminYy), so by compactness of K there
is U € ClopUp(X) such that 1K C U and x ¢ U. Thus, 1K is closed. O

2750005-22



Maximal d-spectra via Priestley duality

As an immediate consequence, we have:

Proposition 7.3. Let X be an arithmetic L-space and K C minYy. The following
are equivalent:

(1) K is compact.
(2) 1K is a d-initial Scott upset.
(3) There is a d-initial Scott upset FF C X such that K = F NminYy.

Theorem 7.4. Let X be an arithmetic L-space. There is a poset isomorphism
between compact subsets of minY, and d-initial Scott upsets of X (both ordered by
inclusion).

Proof. Consider the maps F' — F NminYy and K — 1K, where F' C X is a d-
initial Scott upset and K C min Yy is compact. These are well defined by Lemmal[7.2]
and are clearly order preserving. It suffices to show that these maps are inverses
of each other. But F' = 1(F NminYy) by Lemma [7.2|(1)), and it is easy to see that
K = 1K Nmin Yy, completing the proof. O

We recall (see, e.g. [31}, p. 25]) that a frame is maz-bounded if each proper element
is below a maximal element.

Proposition 7.5. Let L be an arithmetic frame and X its Priestley space. Then
Ly is maz-bounded iff Ny is d-initial.

Proof. Since L, is max-bounded iff every proper d-upset is contained in a maximal
d-upset (see Remark , it suffices to show that the latter condition is equivalent
to Ny being d-initial.

(=) Let y € NgNY. Then y € Yy by Proposition , so X\ly is a d-upset
by Lemma . Hence, there exists a maximal d-upset U such that X\]ly C U.
By Lemma , U = X\|y' for some y' € minYy. Thus, X\|y C X\]y', which
implies that ¢y’ € ly’ C ly. Therefore, 3y’ <y, as required.

(<) Let U be a proper d-upset. Then U = clcoreq U # X,s0 Yy € U by Lemma
Hence, there is y € Yy\U C Ny. Since Ny is d-initial, there is ' € minY, with
y' <y. Therefore, U C X\|y’, which is a maximal d-upset by Lemma [6.4{[2). O

It is well known that if an arithmetic frame L has a unit, then Ly is max-
bounded (see, e.g. |13, before Proposition 3.3]). The following example shows that
L4 being max-bounded is a strictly weaker condition.

Example 7.6. Let L = p(N). Then L is an arithmetic frame, and da = a for all
a € L since L is Boolean, so L = L;. The maximal elements of L, are exactly the
coatoms. Therefore, Ly is max-bounded since it is atomic. However, L; does not
contain a unit since the only dense element is 1, which is not compact.
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We end this section by describing the Priestley analogue of having a unit and
its relation to compactness of min Yj.

Theorem 7.7. Let L be an arithmetic frame and X its L-space. The following are
equivalent.

(1) There is a unit in L.
(2) There is a cofinal U € ClopSUp(X).
(3) There is U € ClopSUp(X) such that Yq CU.

The previous conditions imply the following equivalent conditions.

(4) tminYy is a Scott upset.
(5) minYy is compact.

If in addition Ng is d-initial, then all five conditions are equivalent.

Proof. < (2) By Remark a € K(L) iff p(a) is a Scott upset. Moreover, a
is dense iff max X C ¢(a) by Lemma and Proposition [3.14{(2).

< (3) Suppose U € ClopSUp(X) is cofinal and y € Y. Then
max Ty C max X C U,

so y € U by Theorem . Therefore, Yy, C U. Conversely, suppose Y; C U.
Then Ny = clY,; C U since Ny is an SL-space. But Ny is cofinal by Lemma [3.16
somax X CU.

= Since Ny is inductive, (U N Ng) is a Scott upset. Therefore,
min U N Ng) CY, so
minT(U N Nd) CYNNg; =Y,
We show that min (U N Nyg) = minYy. If y € min (U N Ny) and ¢’ € Yy is such
that y’ <y, then 3y’ € U N Ny because Yy C U, so y = ¢/ since
y € min (U N Ng) = min(U N Ny).
Hence, min (U N Ng) € minYy. Conversely, if y € minYy and = € (U N Ny) with
2 < y, then there is ¢y’ € min (U N Ny) C Yy with ¢ < x < y, so y = ¢ since
y € minYy. Consequently, minYy; = min (U N Ng). Thus, TminY; = (U N Ny),
and hence T min Yy is a Scott upset.
& Since 1 min Yy is d-initial, this follows from Proposition
Finally, suppose that Ny is d-initial.

= ([3) Since min Yy is compact, the open cover {V NminYy |V € ClopSUp(X)} of
min Yy has a finite subcover, and since finite unions of clopen Scott upsets are clopen
Scott upsets, there is V' € ClopSUp(X) such that minYy; C V. By Proposition,
Y, = NgNY. Thus, since Ny is d-initial, Y; C TminY; C V. O
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Remark 7.8. In Example we will show that the assumption in Theorem
that Ny is d-initial is necessary. In fact, we will see that min Yy may be compact
Hausdorff without L having a unit.

8. Hausdorffness of the Maximal d-Spectrum

In this final section, we give an example of an arithmetic frame L with a unit such
that max Ly is not Hausdorff, thus answering the question of |13] in the negative. In
addition, we characterize exactly when max L, is Hausdorff. Our characterization
doesn’t require that L has a unit, only that max L, is locally compact. Under this
assumption, we show that max Ly is Hausdorff iff it is stably locally compact, a
condition that plays an important role in domain theory (see |21, Sec. VI.6]).

Example 8.1. Consider the Stone-Cech compactification of the natural num-
bers AN. Partition the natural numbers in countably many countable sub-
sets N=XoUX; UXoU---, where X; = {z;0,%1,%2,...}. Then for each X,
clX; is a clopen set of SN homeomorphic to SN (see, e.g. |18 p. 174]). Let
X} =cl(X;)NN* and let Y., = {yo, y1,¥y2, ...} U{w} be the one-point compactifica-
tion of a copy of the natural numbers. Consider now the disjoint union X = gNUY,,
and the partial order in Fig. [2, where X = N*\{J, .y X;i.

Our goal is to show that X is an arithmetic L-space such that min Y} is not
Hausdorff. We have several things to verify.

Claim 8.2. X is a Priestley space.

Proof. X is a Stone space since it is the disjoint union of two Stone spaces. It
remains to be shown that X satisfies the Priestley separation axiom. For x € N
and =’ € X with x £ 2/, finding a clopen upset containing x and missing z’ is easy
since AN is a clopen upset of X.

X*
0,0 £0,1 20,2 0 T1,0 1,1 T1,2

Yo Y1

Fig. 2. The Priestley space of an arithmetic frame whose maximal d-spectrum is not Hausdorff.
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Let y €Y, and x € X with y ﬁ x. Then z ¢ tw, so z € [(cl X;) for some i such
that y # y;. Consider U = X\({ cl X;). Since ¢l X; is clopen, so is | ¢l X;. Thus, U
is a clopen upset separating y from z. O

Claim 8.3. X s an L-space.

Proof. It is sufficient to show that clU is a clopen upset for each open upset
U C X. Let U be an open upset. Then U NY,, is open, and it is either empty or
it must contain w. In both cases, cl(U)NY, =UNY,, so clU = U Ucl(U N PN),
which is clearly a clopen upset. O

Claim 8.4. The localic part of X isY =Y, UN.

Proof. We have Y NN* = & since |z N N = {z} is not open for all z € N*, so
Y CY,,UN. For the converse, if y € Y,,\{w} then |y = {y} is clopen. Also, Jw =Y,
is clopen, so Y,, C Y. For z € X;, we have Jx = {z,y;} is clopen. O

Claim 8.5. Let U C X be an upset. Then U € ClopSUp(X) iff one of the following
two conditions holds.

(1) U is a finite subset of N.
(2) UNY, is cofinite, and y; ¢ U implies cl(X;) NU is a finite subset of X;.

Proof. (=) Suppose U € ClopSUp(X) and U NY,, is not cofinite. Since U NY,, is
clopen and not cofinite, w € U. Hence, U NY,, = @ since it is an upset. Therefore,
U C fN = cIN. By Lemma , U C N and by compactness U is finite. Suppose
now that U NY,, is cofinite. If y; ¢ U, then X N U = @, since otherwise U can’t
be Scott upset because min U Z Y (see Claim 8.3). Therefore, U Ncl X; C X;, and
it has to be finite since it is compact.

(<) If U is a finite subset of N, then U € ClopUp(X) and U C Y by Claim
so U € ClopSUp(X). Now suppose holds. Then w € U and y; ¢ U implies
X;NU =o. Hence, minU C Y, UN =Y, so it suffices to show that U is clopen.
Since U N'Y,, is cofinite it is clopen in Y,,. Moreover,

UNAN = {(Xi)nU|y; ¢ Uy U {d Xi|yi € U U X,

By @), U{cdl(X:))NU|y; ¢ U} = U{X;NU|y; ¢ U} C N is finite and hence
clopen. Also, SN\(U{clX;|y; € U} U X}) is clopen since only finitely many
yi ¢ U. Therefore, |J{clX;|y; € U} U X} is clopen. Thus, U N SN is clopen,
and so U = (UNY,)U (U nNPN) is clopen. |

Claim 8.6. X is an algebraic L-space.

Proof. Suppose U € ClopUp(X). We need to show U C cl core U, so suppose
x € U. We consider three cases.
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(i) If z € Y, then w € Tz C U, so UNY,, is cofinite. Then
x € NUNY,) € ClopSUp(X)
by Claim [8.5)(2), and (U NY,,) C coreU.

(ii) If z € N, then Tz = {z} € ClopSUp(X) by Claim , and Tz C coreU.
(iii) Suppose x € N*. Since U is clopen in X, U N AN is clopen, and therefore

(U NN) = U N BN.

Hence, € cl(U N N). Suppose now that V is a clopen neighborhood of
. Then VN (UNN) # @, but UNN=J{{n}|n e NNU} C coreU since
{n} € ClopSUp(X) by Claim [8.5|(1)). Therefore, x € clcoreU. O

Claim 8.7. X is an arithmetic L-space.

Proof. It suffices to show that U NV € ClopSUp(X) for U,V € ClopSUp(X) (see
Definition ), so suppose U,V € ClopSUp(X). Then U and V satisfy one of
the two conditions of Claim [B5] If either U or V is a finite subset of N, then so
is their intersection. Suppose U and V both satisfy Claim . Since a finite
intersection of cofinite sets is cofinite, U NV N'Y,, is cofinite. If y; ¢ U NV, then
either y; ¢ U or y; ¢ V. Without loss of generality we may assume the former.
Then cl(X;) NUNV C cl(X;)NU is a finite subset of X;. Thus, Claim [8.5|[2) holds
for UNV, and so UNV € ClopSUp(X). |

Claim 8.8. minYy; = Y, \{w}.

Proof. Observe that for each y € ¥ = NUY,, there is z € maxX with
{y} = max(lz NY). Therefore, Y; = NUY,, by Theorem [4.12({4). Consequently,
min Yy = Y, \{w}. O

Claim 8.9. minYj is not Hausdorff.

Proof. ClopSUp(X) forms a basis of minY; because UNY = coreU NY for each
U € ClopUp(X). Consequently, it follows from Claim [8.5)(2)) that min Yy is equipped
with the cofinite topology, which is not Hausdorff since min Y} is infinite. O

Claims 8.7 and [8-9] yield the following:

Theorem 8.10. There exist arithmetic L-spaces X such that minYy is not Haus-
dorff.

As promised in Remark 7.8, we now demonstrate that min Y, can be compact
Hausdorff without L having a unit.

Example 8.11. Redefine the order in the space X of Example 8] as in Fig [3]
A similar reasoning to the above yields that X is an arithmetic L-space and its
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20,0 L0,1 20,2

1,0 21,1 T1,2
[ ]

w

Fig. 3. The Priestley space of an arithmetic frame without a unit whose maximal d-spectrum is
compact Hausdorff.

localic part is Y := NU (Y, \{w}). Observe that Y; = Y and minY,; = &, so it
is trivially compact Hausdorff. However, X has no cofinal clopen Scott upset since
X} Cmax X and | X} NY = &. Consequently, X is the L-space of an arithmetic
frame without units.

To characterize when min Yy is Hausdorff, we recall (see, e.g. [21, Definition VI-
6.7]) that a topological space X is coherent if the binary intersection of compact
saturated sets is compact. The space X is stably locally compact if it is sober,
locally compact, and coherent. A stably locally compact space is stably compact if
it is compact, and spectral if in addition compact open sets form a basis. It is well
known (see, e.g. |25 p. 75]) that a spectral space is Hausdorff iff it is 77. The next
lemma generalizes this result to stably locally compact spaces.

Lemma 8.12. If X is stably locally compact, then X is Hausdorff iff X is T}.

Proof. We only need to show the right-to-left implication. Suppose z,y € X are
distinct. Let K, = {K C X|K is a compact saturated neighborhood of 2} and
define /C,, similarly. It suffices to show that there exist K, € K, and K, € K, such
that K, N K, = &. Since X is T7 and locally compact, for each z € X distinct
from z, there is a compact saturated neighborhood K of x missing z. Therefore,
N K. = {z}, and similarly K, = {y}. Consequently, N, NK, = @. By
[21, Lemma VI-6.4], there exists a finite £ C K, UK, such that (K = @. Since X
is stably locally compact, K, and K, are directed. Therefore, there are K, € K,
and K, € K, such that K, N K, = @. Thus, X is Hausdorff. O

Theorem 8.13. Let X be an arithmetic L-space such that minYy is locally com-
pact. Then minYy is Hausdorff iff min Yy is stably locally compact.
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Proof. First suppose that X is Hausdorff. Then X is sober (see, e.g. |25 p. 43]).
Let K, M C X be compact saturated. Since X is Hausdorff, K, M are closed, so
KNM is closed. Since it is a closed subset of a compact set, KNM must be compact.
Thus, X is stably locally compact. Conversely, since min Yy is 7} by Proposition[6.7}
min Yy is Hausdorff by Lemma [8.12 O

Corollary 8.14. Let L be an arithmetic frame with a unit and X its L-space.

(1) minYy is Hausdorff iff minYy is stably locally compact.
(2) max Ly is Hausdorff iff max Ly is stably locally compact.

Proof. We only prove as follows from and Theorem Since L has a
unit, minYy is compact by Theorem [7.7] First suppose that minY, is Hausdorff.
Then min Yy is compact Hausdorff, and hence minYy is stably locally compact.
Conversely, if min Yy is stably locally compact, then Theorem applies, and
hence min Yy is Hausdorff. O

We conclude the paper with several interesting open problems:

e It remains open whether Theorem [B.13] can be reformulated as an equivalence
between sobriety and Hausdorffness. Note that in Example B:I] min Y} is locally
compact and coherent, but it fails to be Hausdorff solely because it is not sober.

e It also remains open whether minYy is always locally compact (and/or coher-
ent). In the absence of sobriety, local compactness of min Yy is not equivalent to
Q(min Yy) being a continuous frame (see, e.g. |25, p. 310]). This disparity empha-
sizes the importance of sobriety in these considerations. Indeed, it is plausible
that in this setting sobriety alone implies Hausdorfiness.

e Resolving the above questions requires developing a general method for identify-
ing which topological spaces can be realized as min Yy;. While each Stone space
can be realized as such, it remains open whether the same can be said about each
compact Hausdorff space (we note that it follows from [22] that each compact
Hausdorff quasi F-space can be realized this way).
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