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We use Priestley duality as a new tool to study maximal d-spectra of arithmetic frames,
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is compact or Hausdorff. Various necessary and sufficient conditions are given, including
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1. Introduction

The space of maximal d-ideals of an archimedean Riesz space with a weak order unit,

equipped with the hull-kernel topology, has been well studied and is known to be a

compact Hausdorff space (see, e.g. [23]). Motivated by this, Martinez and Zenk [28]

initiated the study of d-elements in an arbitrary arithmetic frame. These elements,

denoted dL or Ld, form a sublocale of the arithmetic frame L. The corresponding
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nucleus was coined the d-nucleus. The frame Ld and the spectrum maxLd of max-

imal d-elements were further studied by various authors (see, e.g. [13–16]). It is

known that maxLd is a compact T1-space provided L has a unit. In [13], it was left

open whether maxLd is Hausdorff. Although some characterizations of the Haus-

dorff separation for maxLd were recently established in [14], the question remained

open. Our aim is to answer it in the negative.

Our main tool is Priestley duality for frames. Priestley originally developed her

duality for bounded distributive lattices [33, 34]. It was restricted to the category of

frames by Pultr and Sichler [36], and later the Priestley spaces of arithmetic frames

were characterized in [11]. Building on this work, we describe the subset Nd of the

Priestley space X of an arithmetic frame L corresponding to the d-nucleus on L. We

also describe the subset Yd of Nd corresponding to the spectrum pt(Ld) of points of

the sublocale Ld. We show that the minimum of Yd is in a one-to-one correspondence

with the maximal d-elements of L, thus yielding a homeomorphism between minYd
and maxLd. This allows us to study maxLd in the language of Priestley spaces.

Our main results include the description of the nucleus on L whose fixpoints are

the frame of opens of minYd, the characterization of the soberification of minYd,

and the construction of an arithmetic frame L with a unit such that minYd is

not Hausdorff. This yields that maxLd is not Hausdorff, thus resolving the open

question mentioned above. We also give a necessary and sufficient condition for

maxLd to be Hausdorff. This characterization remains valid even if L doesn’t have

a unit, provided maxLd is locally compact. We also investigate the compactness

of minYd, and hence of maxLd, in comparison with the existence of a unit. Our

approach raises new open questions and highlights the need for further study of

maximal d-spectra of arithmetic frames (see the end of the paper).

The paper is structured as follows. In Sec. 2, we recall Priestley duality for

arithmetic frames, along with useful definitions and results from the literature.

In Sec. 3, we revisit the relationship between nuclei and sublocales, as well as

their description in the language of Priestley spaces. In particular, we show how

to use Priestley duality to give alternative proofs of two existing results in the

literature; Johnstone’s lemma that each Scott open filter arises as the dense elements

of a nucleus and the Isbell Density Theorem. In Sec. 4, we characterize inductive

nuclei in the language of Priestley spaces, as well as provide the dual description

of the d-nucleus on an arithmetic frame L. In Sec. 5, we study the maximum of

the localic part of the Priestley dual of L, which yields a new characterization of

when the sublocale Ld is regular. In Sec. 6, we delve into the investigation of the

spectrum maxLd of maximal d-elements of an arithmetic frame. We establish a

homeomorphism between maxLd and minYd, thus providing us with a new tool

to study the maximal d-spectrum of L. We show that the frame of open sets of

minYd can be realized as a sublocale of L and describe the corresponding nuclear

subset of X. In addition, we prove that the localic part of this nuclear subset is the

soberification of minYd.

2750005-2



2nd Reading

September 24, 2025 16:54 WSPC/S0219-4988 171-JAA 2750005

Maximal d-spectra via Priestley duality

In Sec. 7, we study the topological properties of minYd in comparison to what

is known about maxLd. We describe compact subsets of minYd, which allows us

to characterize when an arithmetic frame has a unit using Priestley duality. This

in particular yields that in the presence of a unit, minYd is a compact space.

Finally, in Sec. 8, we explore the Hausdorff separation for the space minYd. An

example of an arithmetic frame L with a unit is constructed such that maxLd and

hence minYd is not Hausdorff, thus resolving an open question from [13]. Further-

more, we give a characterization of when minYd is Hausdorff, which generalizes

to arithmetic frames without units provided minYd is locally compact. The paper

concludes with several open questions that the authors are looking into to further

the study of minYd.

2. Priestley Duality for Frames

A frame is a complete lattice L such that

a ∧
∨
S =

∨
{a ∧ s | s ∈ S}

for all a ∈ L and S ⊆ L. A frame homomorphism is a map between frames that

preserves finite meets and arbitrary joins. Let Frm be the category of frames and

frame homomorphisms. A frame L is spatial if it is isomorphic to the frame of opens

of a topological space (equivalently, completely prime filters separate elements of

L). Let SFrm be the full subcategory of Frm consisting of spatial frames.

An element a ∈ L is compact if for each S ⊆ L, from a ≤
∨
S it follows that

a ≤
∨
T for some finite T ⊆ S. Let K(L) be the set of compact elements of L.

Then L is algebraic provided

a =
∨
{b ∈ K(L) | b ≤ a}

for each a ∈ L. It is well known (see, e.g. [28, Remark 3.4]) that every algebraic frame

is spatial. A frame homomorphism h : L→M is coherent if h[K(L)] ⊆ K(M). Let

AlgFrm be the category of algebraic frames and coherent frame homomorphisms

between them. An algebraic frame L is arithmetic if K(L) is closed under binary

meets. Let AriFrm be the full subcategory of AlgFrm consisting of arithmetic frames.

A space is zero-dimensional if it has a basis of clopen sets. A Stone space is

a zero-dimensional, compact, Hausdorff space. A Priestley space is a pair (X,≤)

such that X is a Stone space and ≤ is a partial order on X such that the Priestley

separation holds:

If x � y then there is a clopen upset U of X containing x and missing y.

A Priestley morphism is a continuous order-preserving map between Priest-

ley spaces. Let Pries be the category of Priestley spaces and Priestley morphisms.

Let DLat be the category of bounded distributive lattice and bounded lattice

homomorphisms.

Theorem 2.1 (Priestley duality). DLat and Pries are dually equivalent.
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Remark 2.2. The functors X : DLat → Pries and D : Pries → DLat establishing

Priestley duality are described as follows:

• The Priestley space of a bounded distributive lattice D is the set XD of prime fil-

ters of D ordered by inclusion and topologized by the basis {ϕ(a)\ϕ(b) | a, b ∈ D},
where ϕ is the Stone map defined by ϕ(a) = {x ∈ XD | a ∈ x} for all a ∈ D. The

functor X assigns to each D ∈ DLat its Priestley space XD, and to each bounded

lattice homomorphism h : D → E the Priestley morphism h−1 : XE → XD.

• The functor D assigns to each Priestley space X the bounded distributive lattice

ClopUp(X) of clopen upsets of X and to each Priestley morphism f : X → Y the

bounded lattice homomorphism f−1 : ClopUp(Y )→ ClopUp(X).

Definition 2.3. (1) An L-space (localic space) is a Priestley space such that the

closure of each open upset is an open upset.

(2) An L-morphism is a Priestley morphism f : X → Y between L-spaces satisfying

f−1(clU) = cl f−1(U) for each open upset U of Y .

(3) LPries is the category of L-spaces and L-morphisms.

Remark 2.4. Recall that frames are precisely complete Heyting algebras. By

Esakia duality [19], the Priestley spaces of Heyting algebras (Esakia spaces) are

those with the property that the closure of each upset is an upset. Moreover, if X

is the Priestley space of a Heyting algebra L, then L is complete iff X is extremally

order-disconnected; that is, the closure of each open upset is open. Thus, L-spaces

are precisely extremally order-disconnected Esakia spaces.

Theorem 2.5 (Pultr-Sichler duality). Frm and LPries are dually equivalent.

Throughout we will use the following well-known facts (see, e.g. [3, 20, 35]).

Lemma 2.6. Let X be a Priestley space.

(1) If F ⊆ X is closed, then so are ↑F and ↓F .

(2) If F ⊆ X is a closed upset, then it is an intersection of clopen upsets.

(3) If F ⊆ X is closed, then for each x ∈ F there are m ∈ minF and n ∈ maxF

such that m ≤ x ≤ n, where minF and maxF denote the sets of minimal and

maximal points of F, respectively.

If in addition X is an L-space, then we have:

(4) If F ⊆ X is closed, then so is maxF .

(5) If U ⊆ X is clopen, then so is ↓U .

(6) For {Ui} ⊆ ClopUp(X),∨
Ui = cl

⋃
Ui and

∧
Ui = X\↓(X\ int

⋂
Ui).

We next describe the Priestley spaces of spatial, algebraic, and arithmetic

frames.
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Definition 2.7. For an L-space X,

(1) y ∈ X is a localic point if ↓y is clopen;

(2) the set Y of localic points of X is the localic part of X;

(3) X is an SL-space (spatial L-space) if Y is dense in X;

(4) SLPries is the full subcategory of LPries consisting of SL-spaces.

Theorem 2.8 (see, e.g. [10, Corollary 4.10]). SFrm and SLPries are dually

equivalent.

Remark 2.9. Let X be the Priestley space of a frame L, and Y the localic part

of X. We topologize Y by {U ∩ Y |U ∈ ClopUp(X)}. Then Y is precisely the space

of points of L (see, e.g. [1, Proposition 5.1]).

Definition 2.10. Let X be an L-space and Y its localic part.

(1) A closed upset F ⊆ X is a Scott upset if minF ⊆ Y .

(2) ClopSUp(X) is the collection of clopen Scott upsets of X.

Scott upsets play an important role in Priestley spaces of frames as they corre-

spond to Scott open filters on the frame side.

Theorem 2.11 ([9, Theorem 5.6]). Let L be a frame and X its L-space. The

poset of Scott open filters of L is dually isomorphic to the poset of Scott upsets

of X.

Definition 2.12. Let X be an L-space and Y its localic part.

(1) The core of U ∈ ClopUp(X) is coreU =
⋃
{V ∈ ClopSUp(X) |V ⊆ U}.

(2) X is an algebraic L-space if coreU is dense in U for each U ∈ ClopUp(X).

(3) An L-morphism f : X1 → X2 is coherent if f−1(coreU) ⊆ core f−1(U) for each

U ∈ ClopUp(X2).

(4) AlgL is the category of algebraic L-spaces and coherent L-morphisms between

them.

Theorem 2.13 ([11, Theorem 4.9]). AlgFrm and AlgL are dually equivalent.

Consequently, every algebraic L-space is an SL-space.

Remark 2.14. Let X be an L-space and U ∈ ClopUp(X). Then coreU = U iff

U ∈ ClopSUp(X), which by [9, Corollary 5.4] is equivalent to U being a compact

element of ClopUp(X). Thus, ClopSUp(X) = K(ClopUp(X)).

Definition 2.15. (1) An arithmetic L-space is an algebraic L-space X such that

coreU ∩ coreV = core(U ∩ V )

for all U, V ∈ ClopUp(X). Equivalently (see, e.g. [11, Lemma 5.2]),

U, V ∈ ClopSUp(X)⇒ U ∩ V ∈ ClopSUp(X).

(2) AriL is the full subcategory of AlgL consisting of arithmetic L-spaces.
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Theorem 2.16 ([11, Theorem 5.5]). AriFrm and AriL are dually equivalent.

3. Priestley Duals for Nuclei and Sublocales

In this section, we recall the relationship between nuclei and sublocales of a frame

L, as well as their dual characterization as nuclear subsets of the Priestley space of

L. Moreover, we give a dual characterization of the admissible filter of a nucleus on

L, which yields an alternative proof of [26, Lemma 3.4(ii)]. Furthermore, we provide

an alternate proof of Isbell’s Density Theorem, which utilizes Priestley duality.

Definition 3.1 (see, e.g. [25, p. 48]). A nucleus on a frame L is a map j : L→ L

satisfying

(1) a ≤ ja,

(2) jja ≤ ja,

(3) ja ∧ jb = j(a ∧ b)

for all a, b ∈ L.

Let N(L) be the set of nuclei on L. We order N(L) pointwise, i.e. j ≤ k iff

j(a) ≤ k(a) for all a ∈ L. With this order, it is well known that N(L) is a frame

(see, e.g. [25, p. 51]).

Definition 3.2 (see, e.g. [31, p. 26]). Let L be a frame. We call S ⊆ L a

sublocale of L provided S is closed under arbitrary meets and a → s ∈ S for all

a ∈ L and s ∈ S.

Let S(L) be the set of sublocales of L. We order S(L) by inclusion. Then S(L)

is dually isomorphic to N(L) (see, e.g. [31, Sec. III-5]). The dual isomorphism

associates with each nucleus j, the sublocale Sj := j[L] ∈ S(L); and with each

sublocale S, the nucleus jS given by jS(a) =
∧
{s ∈ S | a ≤ s}. Nuclei, and hence

sublocales, dually correspond to nuclear subsets of L-spaces introduced in [37] (see

also [1, 7]):

Definition 3.3. Let X be an L-space.

(1) A subset N of X is a nuclear subset provided N is closed and ↓(U∩N) is clopen

for each clopen subset U of X.

(2) Let N(X) be the set of nuclear subsets of X ordered by inclusion.

Theorem 3.4 ([7, Theorem 30]). Let L be a frame and X its Priestley space.

Then N(L) is dually isomorphic to N(X).

Remark 3.5. The dual isomorphism of the previous theorem is established as

follows: with each j ∈ N(L) we associate the nuclear subset

Nj := {x ∈ X | j−1[x] = x} ∈ N(X),

and with each N ∈ N(X) the nucleus jN ∈ N(ClopUp(X)) given by jN U =

X\↓(N\U). Then j := ϕ−1 ◦ jN ◦ ϕ is the corresponding nucleus on L.
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To simplify notation, we identify N(L) with N(ClopUp(X)). Thus, each

j ∈ N(L) is identified with jNj , and hence, for U ∈ ClopUp(X), we have

j U = X\↓(Nj\U).

Corollary 3.6 ([37, p. 229]). Let L be a frame and X its Priestley space. Then

S(L) is isomorphic to N(X).

Remark 3.7. Let L be a frame and X its Priestley space.

(1) If j ∈ N(L), then Nj seen as a subspace of X is order-homeomorphic to the

Priestley space of the sublocale Sj of L (see, e.g. [7, Lemma 25]).

(2) Localic points ofX are also known as nuclear points (see, e.g. [1, Definition 4.1]).

This is because y ∈ X is localic iff {y} is a nuclear subset.

(3) By [1, Lemma 4.8], the join in N(X) is calculated by∨
Ni = cl

⋃
Ni

for {Ni} ⊆ N(X).

(4) By (3), clZ is a nuclear subset of X for every subset Z ⊆ Y of the localic part.

Let j be a nucleus on L. An element a ∈ L is called j-dense provided ja = 1.

Let Fj be the set of all j-dense elements of L. It is well known and straightforward

to verify that Fj is a filter of L.

Definition 3.8 (see, e.g. [39]). A filter F of a frame L is called admissible if it

is of the form F = Fj for some j ∈ N(L).

Remark 3.9. In [27] admissible filters are called smooth. In [40, Theorem 25.5]

it is shown that a filter is admissible iff it is free, a concept that is now known as

strongly exact (see, e.g. [29]).

Let X be the Priestley space of L. Recalling the well-known correspondence

between filters of L and closed upsets of X (see [35, p. 54] or [5, Corollary 6.3]),

let Hj :=
⋂
ϕ[Fj ] be the closed upset of X corresponding to Fj . To describe the

relationship between Nj and Hj , we require the following lemma.

Lemma 3.10. Let L be a frame, X its Priestley space, j ∈ N(L), and a, b ∈ L.

(1) ϕ(a) ∩Nj = ϕ(ja) ∩Nj.
(2) x ∈ ϕ(ja) iff ↑x ∩Nj ⊆ ϕ(a) ∩Nj.
(3) ja ≤ jb iff ϕ(a) ∩Nj ⊆ ϕ(b) ∩Nj.
(4) ja = jb iff ϕ(a) ∩Nj = ϕ(b) ∩Nj.
(5) a is j-dense iff Nj ⊆ ϕ(a).

Proof. (1) The left-to-right inclusion is clear because a ≤ ja. For the right-to-left

inclusion, suppose x ∈ ϕ(ja)∩Nj . Then ja ∈ x, so a ∈ j−1[x]. But j−1[x] = x since

x ∈ Nj . Consequently, x ∈ ϕ(a) ∩Nj .
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(2) Let x ∈ X. We have

x ∈ ϕ(ja)⇔ x ∈ X\↓(Nj\ϕ(a))

⇔ x /∈ ↓(Nj\ϕ(a))

⇔ ↑x ∩ (Nj\ϕ(a)) = ∅

⇔ ↑x ∩Nj ⊆ ϕ(a) ∩Nj .

(3) Suppose ja ≤ jb. Then ϕ(ja) ⊆ ϕ(jb). Consequently,

ϕ(ja) ∩Nj ⊆ ϕ(jb) ∩Nj
and so ϕ(a) ∩Nj ⊆ ϕ(b) ∩Nj by (1). Conversely, suppose ϕ(a) ∩Nj ⊆ ϕ(b) ∩Nj .
It suffices to show that ϕ(ja) ⊆ ϕ(jb). Let x ∈ ϕ(ja). Then ↑x ∩ Nj ⊆ ϕ(a) ∩ Nj
by (2). Therefore, ↑x ∩Nj ⊆ ϕ(b) ∩Nj by assumption. Thus, x ∈ ϕ(jb) by (2).

(4) This follows from (3).

(5) Suppose ja = 1. Then ϕ(ja) = X. Therefore, by (1),

Nj ∩ ϕ(a) = Nj ∩ ϕ(ja) = Nj .

Thus,Nj ⊆ ϕ(a). Conversely, supposeNj ⊆ ϕ(a). Then ϕ(a)∩Nj = Nj = ϕ(1)∩Nj .
Therefore, by (4), ja = j1 = 1.

Theorem 3.11. Let L be a frame, X its Priestley space, and j ∈ N(L). Then

Hj = ↑Nj.

Proof. Since both Hj and ↑Nj are closed upsets, and hence intersections of clopen

upsets (see Lemma 2.6(2)), it is sufficient to show that Hj ⊆ ϕ(a) iff ↑Nj ⊆ ϕ(a)

for each a ∈ L. We have

Hj =
⋂
b∈Fj

ϕ(b) ⊆ ϕ(a)⇔ a ∈ Fj ⇔ ja = 1

⇔ Nj ⊆ ϕ(a)⇔ ↑Nj ⊆ ϕ(a),

where the first equivalence follows from compactness and the second to last equiv-

alence from Lemma 3.10(5).

The following result about Scott open filters was first established in [26,

Lemma 3.4(ii)] using transfinite induction. Since then various alternative proofs

have been obtained (see, e.g. [24, Sec. 5.1] and the references therein). We utilize

Priestley duality to provide yet another alternative proof.

Corollary 3.12. Every Scott open filter of a frame is admissible.

Proof. Let L be a frame and X its L-space. By Theorem 2.11, Scott open filters

correspond to Scott upsets; and by Theorem 3.11, admissible filters correspond to

closed upsets of the form ↑N for some N ∈ N(X). Therefore, it suffices to show
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that for each Scott upset F , there exists a nuclear subset N ⊆ X such that F = ↑N .

Let N = cl(F ∩ Y ). Then N is nuclear by Remark 3.7(4). Moreover, since F is a

Scott upset, minF ⊆ Y , and hence F = ↑minF = ↑ cl(F ∩ Y ) = ↑N .

Remark 3.13. Our proof that Scott open filters are admissible relies on

Lemma 2.6(3), which requires the Axiom of Choice. An alternative proof using

only the Prime Ideal Theorem can be found in [12, Remark 5.8].

One of the most studied nuclei is the nucleus of double-negation. For a frame L

and a ∈ L, recall that the pseudocomplement of a is given by

a∗ =
∨
{b ∈ L | b ∧ a = 0}.

The map a 7→ a∗∗ is the double-negation nucleus, and the corresponding sublocale

B(L) := {a ∈ L | a = a∗∗}

is the Booleanization of L (see, e.g. [32, p. 246]).

If j is the double-negation nucleus, then j-dense elements are simply called

dense (see, e.g. [38, p. 131]). It is well known that the corresponding admissible

filter dually corresponds to maxX, and so we have:

Proposition 3.14. Let j be the double-negation nucleus on L.

(1) Hj = maxX.

(2) Nj = maxX.

Proof. For (1) see, e.g. [2, Sec. 3]. For (2) observe that (1) and Theorem 3.11 yield

maxX = Hj = ↑Nj . Consequently, Nj = maxX.

The following definition is well known. For parts (1) and (2) see, e.g. [25, p. 50]

and for part (3) see, e.g. [4, p. 108].

Definition 3.15. Let L be a frame and X its Priestley space.

(1) j ∈ N(L) is dense if j0 = 0.

(2) S ∈ S(L) is dense if 0 ∈ S.

(3) N ∈ N(X) is cofinal if maxX ⊆ N .

Lemma 3.16. Let L be a frame, X its Priestley space, and j ∈ N(L). The following

are equivalent.

(1) j is dense.

(2) Sj is dense.

(3) Nj is cofinal.

Proof. The equivalence (1)⇔(2) is obvious, and (1)⇔(3) is proved in [7, Theo-

rems 23(2) and 28(2)].

Theorem 3.17. Let X be an L-space. Then maxX is the least cofinal nuclear

subset.
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Proof. By Proposition 3.14(2), maxX is a nuclear subset of X, and clearly it

is the least such containing maxX. Thus, it is the least cofinal nuclear subset

of X.

As a consequence, we obtain the following well-known result of Isbell (see, e.g.

[31, p. 40]):

Corollary 3.18 (Isbell’s Density Theorem). For a frame L, the Booleanization

B(L) is the least dense sublocale of L.

Proof. Let Sj ⊆ L be a dense sublocale. Therefore, Nj is cofinal by Lemma 3.16,

and so maxX ⊆ Nj by Theorem 3.17. Consequently, B(L) ⊆ Sj by Corollary 3.6

and Proposition 3.14(2).

4. Priestley Duality for the d-Nucleus

In this section, we describe Priestley duals of inductive nuclei, introduced and

studied by Martinez and Zenk [28]. We use the Priestley duality tools from previous

sections to study the most prominent inductive nucleus, known as the d-nucleus.

Among other things, we characterize the nuclear set Nd corresponding to the d-

nucleus, and its localic part Yd.

Definition 4.1 ([28, Sec. 4]). A nucleus j on an algebraic frame L is inductive

if for all a ∈ L we have

ja =
∨
{jk | k ∈ K(L) and k ≤ a}.

Let X be the Priestley space of L. As we pointed out after Remark 3.5, we iden-

tify N(L) with N(ClopUp(X)), so for each j ∈ N(L) there is a unique N ∈ N(X)

such that j U = X\↓(N\U) for each U ∈ ClopUp(X).

Definition 4.2. Let X be an L-space. For j ∈ N(ClopUp(X)) and U ∈ ClopUp(X),

define the j-core of U by

corejU =
⋃
{j V |V ∈ ClopSUp(X) and V ⊆ U}.

Remark 4.3. Let j be a nucleus on an arithmetic frame L and let X be the

Priestley space of L. Then X is an arithmetic L-space by Theorem 2.16. Therefore,

for all clopen upsets U, V of X,

corej U ∩ corej V =
⋃
{j U ′ |U ′ ∈ ClopSUp(X), U ′ ⊆ U}

∩
⋃
{j V ′ |V ′ ∈ ClopSUp(X), V ′ ⊆ U}

=
⋃
{j (U ′ ∩ V ′) |U ′, V ′ ∈ ClopSUp(X), U ′ ⊆ U, V ′ ⊆ V }

=
⋃
{jW |W ∈ ClopSUp(X), W ⊆ U ∩ V }

= corej(U ∩ V ),
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where the second to last equality is a consequence of X being an arithmetic L-space

(see Definition 2.15(1)).

Definition 4.4. Let X be an L-space. We call N ∈ N(X) inductive if ↑(F ∩N) is

a Scott upset for each Scott upset F of X.

As the name suggests, a nuclear subset is inductive iff its corresponding nucleus

is inductive. To prove this, we recall the following:

Lemma 4.5. Let X be an L-space and Y its localic part.

(1) ([9, Lemma 5.1]) A closed upset F of X is a Scott upset iff F ⊆ clU implies

F ⊆ U for all open upsets U of X.

(2) ([10, Lemma 4.14]) Let y ∈ Y and U be an open upset of X. Then y ∈ U iff

y ∈ clU .

Theorem 4.6. Let X be an algebraic L-space and N ∈ N(X). The following are

equivalent.

(1) N is inductive.

(2) jN U = cl corejN U for all U ∈ ClopUp(X).

(3) jN is inductive.

Proof. (1)⇒ (2) Let U ∈ ClopUp(X). Clearly, cl corejN U ⊆ jN U . For the other

inclusion, since Y is dense in X (every algebraic L-space is an SL-space), it is

sufficient to show that jN (U) ∩ Y ⊆ corejN U . Suppose that y ∈ jN (U) ∩ Y . Then

↑y ∩ N ⊆ U by Lemma 3.10(2). Since ↑y is a Scott upset and N is inductive,

↑(↑y ∩N) is a Scott upset. But

↑(↑y ∩N) ⊆ U = cl coreU

and hence ↑(↑y ∩ N) ⊆ coreU by Lemma 4.5(1). Therefore, since finite unions

of clopen Scott upsets are clopen Scott upsets, by compactness there exists

V ∈ ClopSUp(X) such that ↑y ∩ N ⊆ V and V ⊆ U . Thus, y ∈ jN V by

Lemma 3.10(2), and so y ∈ corejN U , proving that jN (U) ∩ Y ⊆ corejN U .

(2)⇒ (1) Let F be a Scott upset and ↑(F ∩N) ⊆ clU for some open upset U . Since

X is an L-space, U ′ = clU ∈ ClopUp(X). Let y ∈ minF . Then

↑y ∩N ⊆ ↑(F ∩N) ⊆ U ′,

so y ∈ jN U
′ by Lemma 3.10(2). Therefore, y ∈ cl corejN U

′ by (2), and hence

y ∈ corejN U
′ by Lemma 4.5(2). Thus, there is Vy ∈ ClopSUp(X) such that

y ∈ jN Vy and Vy ⊆ U ′. We have F = ↑minF ⊆
⋃
{jN Vy | y ∈ minF}, so by com-

pactness there are V1, . . . , Vn ∈ ClopSUp(X) such that F ⊆ jN V1 ∪ · · · ∪ jN Vn.

Let V = V1 ∪ · · · ∪ Vn. Then V ∈ ClopSUp(X). Furthermore, F ⊆ jNV since jN
is order-preserving, and clearly V ⊆ U ′. The latter together with Lemma 4.5(1)

yields that V ⊆ U . Since F ⊆ jN V , we have F ∩ N ⊆ jN (V ) ∩ N = V ∩ N by
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Lemma 3.10(1). Consequently, ↑(F ∩N) ⊆ U , and hence ↑(F ∩N) is a Scott upset

by Lemma 4.5(1).

(2)⇔ (3) Observe that

jN is inductive⇔ jN U =
∨
{jN V |V ∈ K(ClopUp(X)) and V ≤ U}.

But K(ClopUp(X)) = ClopSUp(X) (see Remark 2.14) and
∨
U = cl

⋃
U for

U ⊆ ClopUp(X) (see Lemma 2.6(6)). Therefore,∨
{jN V |V ∈ K(ClopUp(X)) and V ≤ U} = cl corejN U.

Consequently, jN is inductive iff U = cl corejN U for all U ∈ ClopUp(X).

A prominent example of an inductive nucleus is the so-called d-nucleus, intro-

duced by Martinez and Zenk [28, Sec. 5] as a frame-theoretic tool to study d-ideals

of Riesz spaces (see [23; 28, Remark 5.6]).

Definition 4.7. Let L be an algebraic frame.

(1) Define d : L→ L by da =
∨
{k∗∗ | k ∈ K(L) and k ≤ a} for all a ∈ L.

(2) We call a ∈ L a d-element if da = a.

We write Ld for the fixpoints of d.

Theorem 4.8 ([28, Sec. 5]). Let L be an algebraic frame.

(1) d is a closure operator on L.

If in addition L is arithmetic, then

(2) d is an inductive dense nucleus on L.

(3) Ld is a dense sublocale of L and is an arithmetic frame.

We next describe the nuclear subset Nd of the Priestley space of L corresponding

to the sublocale Ld. As in Remark 3.7(1), for each nucleus j on a frame L, we view

the corresponding nuclear subset Nj as the Priestley space of the sublocale Lj .

Proposition 4.9. Let L be a frame, X its Priestley space, and Y the localic part

of X.

(1) If j ∈ N(L), then Nj ∩ Y is the localic part of Nj.

If in addition L is an arithmetic frame, then

(2) Nd is a cofinal inductive nuclear subset of X.

(3) Nd is an arithmetic L-space.

(4) Nd = cl(Nd ∩ Y ).

Proof. (1) Let Yj be the localic part of Nj . We need to show that Yj = Nj ∩ Y .

It is straightforward to see that Nj ∩ Y ⊆ Yj . It remains to show that Yj ⊆ Y .
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Suppose y ∈ Yj . Then ↓y ∩ Nj is clopen in Nj . Therefore, there is clopen U ⊆ X

such that ↓y ∩ Nj = U ∩ Nj . Since Nj is a nuclear set, ↓(U ∩ Nj) is clopen in X.

But ↓(U ∩Nj) = ↓(↓y ∩Nj) = ↓y because y ∈ Nj . Thus, y ∈ Y .

(2) Apply Theorems 4.8(2) and 4.6, and Lemma 3.16.

(3) Since L is arithmetic, so is Ld by Theorem 4.8(3). Therefore, the result follows

from Theorem 2.16 because Nd is the Priestley dual of Ld.

(4) Nd ∩ Y is the localic part of Nd by (1), and Nd is an SL-space by (3). Hence,

cl(Nd ∩ Y ) = Nd.

Let X be an arithmetic L-space. Since ClopSUp(X) = K(ClopUp(X)) (see Re-

mark 2.14), d : ClopUp(X)→ ClopUp(X) is given by

dU = cl
⋃
{V ∗∗ |V ∈ ClopSUp(X) and V ⊆ U},

where V ∗ = X\↓V (see, e.g. [20, p. 20]), so x ∈ V ∗∗ iff ↑x ⊆ ↓V . We also recall

(see Definition 4.2) that the d-core of U ∈ ClopUp(X) is given by

cored U =
⋃
{d V |V ∈ ClopSUp(X) and V ⊆ U}.

Lemma 4.10. Let L be an arithmetic frame, X its Priestley space, and Y the

localic part of X.

(1) If U ∈ ClopSUp(X), then dU = U∗∗.

(2) If U ∈ ClopUp(X), then x ∈ cored U iff ↑x ⊆ ↓ coreU .

Proof. (1) dU = cl
⋃
{V ∗∗ |V ∈ ClopSUp(X) and V ⊆ U} = U∗∗ since

U ∈ ClopSUp(X).

(2) First suppose that x ∈ cored U . Then there is V ∈ ClopSUp(X) with x ∈ d V
and V ⊆ U . Therefore, x ∈ V ∗∗ by (1), which means that ↑x ⊆ ↓V . Since V is a

Scott upset, V ⊆ U implies V ⊆ coreU . Thus, x ∈ d V implies ↑x ⊆ ↓ coreU . For

the converse, if ↑x ⊆ ↓ coreU , then

↑x ⊆
y⋃{V ∈ ClopSUp(X) |V ⊆ U} =

⋃
{↓V |V ⊆ U and V ∈ ClopSUp(X)}.

Hence, by Lemma 2.6(5), {↓V |V ⊆ U and V ∈ ClopSUp(X)} is an open cover of

↑x. Since ↑x is compact and this open cover is directed, there is V ∈ ClopSUp(X)

such that V ⊆ U and ↑x ⊆ ↓V . This yields that x ∈ V ∗∗, so x ∈ d V by (1).

Consequently, x ∈ cored U .

Let X be an arithmetic L-space and Y its localic part. We let Yd denote

the localic part of Nd. By Proposition 4.9(1), Yd = Nd ∩ Y . We conclude the

section by giving several characterizations of Yd. For this we need the following

lemma.

Lemma 4.11. Let X be an algebraic L-space and F a Scott upset of X. Then

F =
⋂
{U ∈ ClopSUp(X) |F ⊆ U}.
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Proof. Since F is a closed upset, F =
⋂
{U ∈ ClopUp(X) |F ⊆ U} (see

Lemma 2.6(2)). Thus, it suffices to show that for each U ∈ ClopUp(X) with F ⊆ U ,

there is V ∈ ClopSUp(X) with F ⊆ V ⊆ U . Since X is an algebraic L-space,

U = cl coreU , so F ⊆ U implies that F ⊆ coreU by Lemma 4.5(1). Now apply

compactness to obtain the desired V .

Theorem 4.12. Let L be an arithmetic frame, X its Priestley space, and Y the

localic part of X. For y ∈ Y, the following are equivalent.

(1) y ∈ Yd.

(2) ∀U ∈ ClopUp(X), y ∈ cored U =⇒ y ∈ U .

(3) ∀V ∈ ClopSUp(X), max ↑y ⊆ V =⇒ y ∈ V .

(4) {y} = max(↓x ∩ Y ) for some x ∈ maxX.

Proof. (1)⇒ (2) If y ∈ cored U , then y ∈ dU . Therefore, since y ∈ Yd ⊆ Nd,

Lemma 3.10(1) implies that y ∈ U .

(2)⇒ (3) Suppose max ↑y ⊆ V . Then ↑y ⊆ ↓V . Since V is a clopen Scott upset,

V = coreV by Remark 2.14. Therefore, ↓V = ↓ coreV , and hence y ∈ cored V by

Lemma 4.10(2). Thus, y ∈ V by (2).

(3)⇒ (4) Suppose that for every x ∈ max ↑y there is y′ ∈ ↓x ∩ Y with y < y′ ≤ x.

Then y′ � y, so Lemma 4.11 implies that there is Vx ∈ ClopSUp(X) with y′ ∈ Vx and

y 6∈ Vx. Therefore, max ↑y ⊆
⋃
Vx, and since max ↑y is closed (see Lemma 2.6(4))

and the open cover is directed, there is V ∈ ClopSUp(X) containing max ↑y and

missing y, a contradiction.

(4)⇒ (1) It is sufficient to show that da ∈ y implies a ∈ y for each a ∈ L, and

hence it is enough to show that y ∈ dU implies y ∈ U for each U ∈ ClopUp(X).

Let y ∈ dU . Then y ∈ cl cored U since d is inductive. Therefore, y ∈ cored U by

Lemma 4.5(2). Thus, by Lemma 4.10(1), y ∈ d V = V ∗∗ for some V ∈ ClopSUp(X)

with V ⊆ U . Hence, ↑y ⊆ ↓V . By (4), there is x ∈ maxX with {y} = max(↓x∩Y ).

But then x ∈ V , and since V is a Scott upset, there is y′ ∈ V ∩ Y with y′ ≤ x.

Consequently, y′ ≤ y, and so y ∈ V ⊆ U .

5. maxY and Regularity of Ld

Martinez and Zenk [28, Proposition 5.2] characterized when Ld is a regular frame. In

this section, we give several alternative characterizations, utilizing Priestley duality.

This, in particular, involves the maximal spectrum maxY of the localic part Y of

the Priestley space of L. As a consequence, we obtain that Ld is regular iff Ld is

locally Stone.

Recall (see, e.g. [31, p. 89]) that a frame L is regular if for all a ∈ L we have

a =
∨
{b ∈ L | b∗ ∨ a = 1}.
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Priestley spaces of regular frames were studied in [6, 10, 36]. We recall:

Definition 5.1 ([10, Definitions 7.1 and 7.6]). Let X be an L-space.

(1) For U ∈ ClopUp(X), the regular part of U is

regU =
⋃
{V ∈ ClopUp(X) | ↓V ⊆ U}.

(2) X is L-regular if cl regU = U for each U ∈ ClopUp(X).

Theorem 5.2. Let L be a frame, X its Priestley space, and Y the localic part of X.

(1) [6, Lemma 3.6] L is regular iff X is L-regular.

(2) [10, Proof of Theorem 7.11] If X is an SL-space and Y is regular, then X is

L-regular.

(3) [10, Lemma 7.15(3)] If X is L-regular, then Y ⊆ minX.

An element p 6= 1 of a frame L is (meet-)prime if a∧b ≤ p implies a ≤ p or b ≤ p
(see, e.g. [31, p. 13]). A prime element p is minimal prime with respect to a ∈ L if

p is minimal among the primes q ≥ a. It is known (see, e.g. [30, p. 264]) that every

prime element p greater than a ∈ L has a minimal prime element q with respect to

a beneath it. Since the assignment p 7→ L\↓p establishes an isomorphism between

the posets of prime elements and completely prime filters (see, e.g. [31, p. 14]), this

condition can equivalently be formulated as follows: for every completely prime

filter P contained in a filter F , there exists a completely prime filter Q that is

maximal among the completely prime filters contained in F . Thus, we arrive at the

following lemma, which gives the means to find (relatively) maximal localic points.

Lemma 5.3. Let L be a frame, X its Priestley space, Y the localic part of X, and

y ∈ Y .

(1) ↑y ∩maxY 6= ∅.

(2) ↑y ∩max(↓x ∩ Y ) 6= ∅ for every x ∈ X with y ≤ x.

Proof. For (1) take P = y and F = L, and for (2) take P = y and F = x.

We show that maxY ⊆ Yd, but that the converse is not true in general. For this

we require the following lemma.

Lemma 5.4. Let L be an arithmetic frame, X its Priestley space, and Y the localic

part of X.

(1) If F and G are Scott upsets of X, then so is F ∩G.

(2) Suppose y ∈ maxY and F is a Scott upset of X. If ↑y ∩ F 6= ∅, then y ∈ F .

Proof. (1) This can be seen by applying [11, Lemma 5.2; 10, Lemma 6.3(2)]. To

keep the proof self-contained, we give a short argument. By Lemma 4.11, F and

G are intersections of down-directed families of clopen Scott upsets. Therefore, so

is F ∩ G since the binary intersection of clopen Scott upsets is a clopen Scott
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upset (X is an arithmetic L-space). Thus, F ∩ G is a Scott upset because the

intersection of a down-directed family of clopen Scott upsets is a Scott upset (see

[10, Lemma 5.14(1)]).

(2) Since ↑y ∩ F is a nonempty closed upset, min(↑y ∩ F ) 6= ∅ (see, e.g. [20,

Theorem 3.2.1]). Because ↑y, F are Scott upsets, ↑y ∩ F is also a Scott upset by

(1). Therefore, min(↑y ∩ F ) ⊆ Y . Since y is underneath each point in min(↑y ∩ F )

and y ∈ maxY , we conclude that min(↑y ∩ F ) = {y}, and hence y ∈ F .

Theorem 5.5. Let X be an algebraic L-space and Y its localic part.

(1) If N ⊆ X is a cofinal inductive nuclear subset, then maxY ⊆ N .

(2) If X is the Priestley space of an arithmetic frame L, then maxY ⊆ Yd.

Proof. (1) Let y ∈ maxY . Since ↑y is a Scott upset and N is inductive, ↑(↑y ∩N)

is a Scott upset. Because N is cofinal, maxX ⊆ N , and thus ↑y∩N 6= ∅. Therefore,

↑(↑y ∩ N) ⊆ ↑y is a nonempty Scott upset, so y ∈ ↑(↑y ∩ N) by Lemma 5.4(2).

Hence, ↑y ⊆ ↑(↑y ∩N). Consequently, ↑y = ↑(↑y ∩N), and so y ∈ N .

(2) By Proposition 4.9(2), Nd is a cofinal inductive nuclear subset of X. Therefore,

maxY ⊆ Nd by (1), and so maxY ⊆ Yd by Proposition 4.9(1).

Example 5.6. To see that in general maxY 6= Yd, let βN be the Stone–Čech

compactification of the natural numbers (see, e.g. [18, p. 174]). As is customary, we

write N∗ for the remainder. Let X = βN ∪ {y}, where the order on X is defined as

shown in Fig. 1(a). It is well known (see, e.g. [17, p. 28]) that βN is homeomorphic

to the Stone space of the powerset ℘(N) of N. Therefore, X is homeomorphic to the

Priestley space of the lattice L obtained by adding a new top to ℘(N); see Fig. 1(b).

Since ℘(N) is an arithmetic frame and 1 ∈ K(L), it is clear that so is L, and hence

X is an arithmetic L-space.

Because the set of isolated points of X is N ∪ {y}, we have that ↓x is clopen

iff x is an isolated point of X. Thus, the localic part of X is Y = N ∪ {y}. There-

fore, maxY = N. On the other hand, y ∈ Nd by Theorem 4.12(4), so Yd = Y .

Consequently, Yd 6= maxY .

0 1 2

y

. . .
N∗

℘(N)

(a) The Priestley space βN ∪ {y}. (b) The lattice ℘(N) with a new top.

Fig. 1. An arithmetic L-space in which Yd 6= maxY .
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In order to characterize when Ld is regular, we require the following lemma,

which allows us to separate Scott upsets from maximal localic points via clopen

Scott upsets.

Lemma 5.7. Let X be an arithmetic L-space, Y its localic part, and F a Scott upset

of X. If y ∈ maxY \F, then there is U ∈ ClopSUp(X) with y ∈ U and U ∩ F = ∅.

Proof. Since y 6∈ F , we have ↑y∩F = ∅ by Lemma 5.4(2). Therefore, Lemma 4.11

yields that
⋂
{U ∈ ClopSUp(X) | y ∈ U}∩F = ∅. Thus, we can use compactness and

the fact that finite intersections of clopen Scott upsets are again Scott upsets (X is

an arithmetic L-space) to produce U ∈ ClopSUp(X) with y ∈ U and U ∩ F = ∅.

We recall that a space X is locally Stone if X is zero-dimensional, locally com-

pact, and Hausdorff. Thus, X is locally Stone if in the definition of a Stone space

we weaken compactness to local compactness. A frame L is locally Stone if it is

isomorphic to the frame of opens of a locally Stone space. By [8, Theorem 3.11],

a frame is locally Stone iff it is algebraic and zero-dimensional (each element is a

join of complemented elements). We will use the following fact: if L is an algebraic

frame and X its Priestley space, then the localic part Y of X is locally compact

(see [10, Theorem 5.10], where the result is proved in the more general setting of

continuous frames).

Theorem 5.8. Let L be an arithmetic frame, X its Priestley space, and Y the

localic part of X. The following are equivalent.

(1) Ld is regular.

(2) Nd is L-regular.

(3) Yd is an antichain.

(4) maxY = Yd.

(5) Yd is a locally Stone space.

(6) Ld is a locally Stone frame.

Proof. (1)⇔ (2) This is immediate from Theorem 5.2(1) since Nd is the Priestley

space of Ld.

(2)⇒ (3) If Nd is L-regular, then Yd ⊆ minNd by Theorem 5.2(3). Therefore, Yd is

an antichain.

(3)⇒ (4) By Theorem 5.5(2), maxY ⊆ Yd. For the converse, suppose y ∈ Yd. By

Lemma 5.3(1), there is y′ ∈ maxY ∩ ↑y. Then y′ ∈ maxY ⊆ Yd, so y = y′ since Yd
is an antichain by (3). Thus, y ∈ maxY .

(4)⇒ (5) Since L is arithmetic, Ld is arithmetic by Theorem 4.8(3). Therefore, as

we pointed out above, Yd is locally compact. Recall (see Remark 2.9) that open

subsets of Yd are exactly the sets of the form U ∩Yd for U ∈ ClopUp(X). Hence, (4)

implies that open subsets are the sets of the form U ∩maxY . By Lemma 4.5(2),

U ∩maxY = cl(coreU) ∩maxY = coreU ∩maxY.
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Thus, to see that Yd is zero-dimensional, it is enough to show that U ∩ maxY is

clopen for each U ∈ ClopSUp(X). For this it is sufficient to show that for each

y ∈ maxY \U there is V ∈ ClopSUp(X) with y ∈ V ∩maxY ⊆ maxY \U . But this

follows from Lemma 5.7. Finally, to see that Yd is Hausdorff, let y, y′ ∈ Yd = maxY

be distinct. Then y 6∈ ↑y′, so by Lemma 5.7 there is U ∈ ClopSUp(X) such that

y ∈ U and y′ 6∈ U . But then y ∈ U ∩ Yd, which is clopen by the above.

(5)⇔ (6) Because Ld is spatial and Yd is the space of points of Ld (see Remark 2.9),

Ld is isomorphic to the frame Ω(Yd) of open subsets of Yd. Therefore, Yd is locally

Stone iff Ld is locally Stone by [8, Theorem 3.11].

(5)⇒ (2) Since Yd is locally Stone, Yd is regular. Hence, Nd is L-regular by Theo-

rem 5.2(2).

6. Spectra of Maximal d-Elements

In this section, we begin our investigation of the spectrum maxLd of maximal

d-elements of an arithmetic frame L, as introduced in [13]. First, we show that

maxLd is in a bijective correspondence with minYd. Following this, we establish

that minYd, viewed as a subspace of Y , is homeomorphic to maxLd. The homeo-

morphism enables us to analyze the properties of maxLd through minYd. We show

that the frame Ω(minYd) of open subsets of minYd can be realized as a sublocale of

L, and describe the corresponding nuclear subset of X. We conclude the section by

observing that the localic part of this nuclear subset is the soberification of minYd.

Definition 6.1. Let X be an arithmetic L-space and U ∈ ClopUp(X).

(1) We call U a d-upset if cl cored U = U .

(2) We call U a maximal d-upset if it is maximal among proper d-upsets of X.

Remark 6.2. Since d is inductive, it is straightforward to verify that (maximal)

d-elements of an arithmetic frame correspond to (maximal) d-upsets of its Priestley

space.

We now show that maximal d-upsets are in one-to-one correspondence with

elements of minYd. For this, we require the following lemmas.

Lemma 6.3. Let X be an arithmetic L-space and U ∈ ClopUp(X). Then

cl cored U = X iff Yd ⊆ U .

Proof. Since d is inductive, cl cored U = X iff dU = X (see Theorem 4.6(2)). It

follows from Lemma 3.10(5) that dU = X iff Nd ⊆ U . But by Proposition 4.9(4),

Nd = clYd, so Nd ⊆ U iff Yd ⊆ U since U is closed.

Lemma 6.4. Let X be an arithmetic L-space and y ∈ Yd.

(1) X\↓y is a d-upset.

(2) X\↓y is a maximal d-upset iff y ∈ minYd.
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(3) Maximal d-upsets are exactly the clopen upsets of the form X\↓y for some

y ∈ minYd.

Proof. (1) We need to show X\↓y = cl cored(X\↓y). For this it suffices to show

that Y ∩ (X\↓y) = Y ∩cored(X\↓y) since X is an SL-space. We have Y ∩ (X\↓y) ⊆
Y ∩ cored(X\↓y) since Y ∩ U = Y ∩ coreU and coreU ⊆ cored U for each clopen

upset U . For the reverse inclusion, let z ∈ Y and suppose towards a contradiction

that z ∈ cored(X\↓y) and z 6∈ X\↓y. Then z ≤ y, so y ∈ cored(X\↓y). Therefore,

y ∈ X\↓y by Theorem 4.12 (y ∈ Yd), a contradiction.

(2) Suppose y 6∈ minYd. Then there exists y′ ∈ Yd with y′ < y. Therefore, there ex-

ists V ∈ ClopUp(X) containing y and missing y′. Let U = cl cored(V ∪ (X\↓y)).

Then U is a d-upset and X\↓y ( U because y ∈ U and y /∈ X\↓y. But

U = cl cored(V ∪ (X\↓y)) 6= X by Lemma 6.3 since y′ ∈ Yd and y′ /∈ V ∪ (X\↓y),

yielding that Yd 6⊆ V ∪ (X\↓y). Thus, X\↓y is not a maximal d-upset.

Suppose y ∈ minYd and X\↓y ( U for a d-upset U . Then y ∈ U , and since

y ∈ minYd we get Yd ⊆ (X\↓y) ∪ {y} ⊆ U . Therefore, U = cl cored U = X by

Lemma 6.3.

(3) By (2) it suffices to show that every maximal d-upset is of the desired form,

so suppose U ∈ ClopUp(X) is a maximal d-upset. Then cl cored U = U 6= X, so

Yd 6⊆ U by Lemma 6.3. Therefore, there exists y ∈ Yd\U . Then ↓y ∩ U = ∅, so

U ⊆ X\↓y 6= X. But X\↓y is a d-upset by (1). Hence, U = X\↓y since U is a

maximal d-upset. Thus, y ∈ minYd by (2).

As an immediate consequence, we obtain:

Theorem 6.5. Let X be an arithmetic L-space. The map y 7→ X\↓y is a bijection

from minYd to the collection of maximal d-upsets of X.

Equipping Yd with the subspace topology inherited from Y , we have:

Theorem 6.6. minYd is homeomorphic to maxLd.

Proof. Since ϕ : L → ClopUp(X) is an isomorphism, define α : minYd → maxLd
by α(y) = ϕ−1(X\↓y). By Theorem 6.5, α is a bijection. Thus, it suffices to show

that for all U ⊆ minYd we have U is open iff α(U) is open. Now, U is open iff

U = V ∩minYd for some V ∈ ClopUp(X), and α(U) is open iff

α(U) = {m ∈ maxLd | a 6≤ m}
for some a ∈ L (see, e.g. [13, Sec. 3]). Since m ∈ max(Ld) iff ϕ(m) is a maximal

d-upset, by Lemma 6.4(3) we have that m ∈ max(Ld) iff ϕ(m) = X\↓y for some

y ∈ minYd. Moreover, for a ∈ L, we have that ϕ(a) 6⊆ X\↓y iff y ∈ ϕ(a). Therefore,

α(U) = {m ∈ maxLd | a 6≤ m} ⇔ ϕ[α(U)] = {ϕ(m) |ϕ(a) 6⊆ ϕ(m)}

⇔ ϕ[α(U)] = {X\↓y | y ∈ minYd, ϕ(a) 6⊆ X\↓y}

⇔ U = {y ∈ minYd | y ∈ ϕ(a)} ⇔ U = ϕ(a) ∩minYd.
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As we pointed out in the introduction, if L is an arithmetic frame with a unit

(see the beginning of Sec. 7), then maxLd is a compact T1-space. We next show

that being T1 does not depend on the existence of a unit.

Proposition 6.7. minYd is T1.

Proof. Suppose y, y′ ∈ minYd are distinct. Then y 6≤ y′ since minYd is an

antichain. By Priestley separation, there exists U ∈ ClopUp(X) with y ∈ U

and y′ /∈ U . Hence, U ∩ minYd is an open subset of minYd containing y and

missing y′.

We now concentrate on the frame Ω(minYd) of open subsets of minYd and show

that it can be realized as a sublocale of L. To this end, since L is isomorphic to

ClopUp(X), we introduce a nucleus on ClopUp(X) that determines Ω(minYd).

Lemma 6.8. The map h : ClopUp(X)→ Ω(minYd), given by h(U) = U ∩minYd,

is an onto frame homomorphism.

Proof. It is clear that h is onto and preserves finite meets. To see that it preserves

arbitrary joins let {Ui} ⊆ ClopUp(X). Then, by Lemma 4.5(2),

h
(∨

Ui

)
=
(

cl
⋃
Ui

)
∩minYd =

(⋃
Ui

)
∩minYd

=
⋃

(Ui ∩minYd) =
⋃
h(Ui).

By the previous lemma, there is a nucleus ρ = h∗ ◦ h : ClopUp(X)→ ClopUp(X),

where h∗ is the right adjoint of h (see, e.g. [31, p. 31]). Then, for each

U ∈ ClopUp(X),

ρ(U) =
∨
{V ∈ ClopUp(X) |h(V ) ⊆ h(U)}

= cl
⋃
{V ∈ ClopUp(X) |V ∩minYd ⊆ U ∩minYd}

= cl
⋃
{V ∈ ClopUp(X) |V ∩minYd ⊆ U}.

Lemma 6.9. Let L be an arithmetic frame and X its L-space. For a ∈ L set

Ma =
∧
{m ∈ maxLd | a ≤ m}.

Then ϕ(
∧
Ma) = ρ(ϕ(a)).

Proof. Observe that

ϕ
(∧

Ma

)
= ϕ

(∨
{b ∈ L | b ≤ m for all m ∈Ma}

)
= cl

⋃{
V ∈ ClopUp(X) |V ⊆

⋂
ϕ[Ma]

}
.

Recall that m ∈ maxLd iff ϕ(m) is a maximal d-upset. Thus, using Lemma 6.4(3),

we obtain that m ∈ Ma iff ϕ(m) = X\↓y for some y ∈ minYd\ϕ(a).
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Therefore,⋂
ϕ[Ma] =

⋂
{X\↓y | y ∈ minYd\ϕ(a)} = X\↓(minYd\ϕ(a)).

Consequently, since V is an upset,

V ⊆
⋂
ϕ[Ma]⇔ V ⊆ X\↓(minYd\ϕ(a))

⇔ V ∩ ↓(minYd\ϕ(a)) = ∅

⇔ V ∩ (minYd\ϕ(a)) = ∅

⇔ V ∩minYd ⊆ ϕ(a),

and the result follows from the above description of ρ.

Remark 6.10. By the previous lemma, the nucleus ρ can be defined on an arbitrary

arithmetic frame L by

ρ(a) =
∧
{m ∈ maxLd | a ≤ m}

for each a ∈ L.

We now describe the nuclear subset of X corresponding to the nucleus ρ. For

this we use the following:

Theorem 6.11. Let L be an arithmetic L-space. Then Nρ = cl minYd.

Proof. By Remark 3.7(4), cl minYd is a nuclear subset of X. Let j ∈ N(L) be

the nucleus associated with cl minYd (see Remark 3.5). It suffices to show that

ϕ(j(a)) = ρ(ϕ(a)) for all a ∈ L.

(⊆) Let x ∈ ϕ(j(a)). Then ↑x ∩ cl minYd ⊆ ϕ(a) by Lemma 3.10(2). Since ↑x is a

closed upset, it is an intersection of clopen upsets (see Lemma 2.6(2)). Therefore,

by compactness, there is V ∈ ClopUp(X) such that x ∈ V and V ∩cl minYd ⊆ ϕ(a).

Thus, V ∩minYd ⊆ ϕ(a), and so x ∈ ρ(ϕ(a)).

(⊇) By Lemma 4.5(2),

ρ(ϕ(a)) ∩minYd = cl
⋃
{V ∈ ClopUp(X) |V ∩minYd ⊆ ϕ(a)} ∩minYd

=
⋃
{V ∈ ClopUp(X) |V ∩minYd ⊆ ϕ(a)} ∩minYd ⊆ ϕ(a).

Therefore, since ϕ(a) is closed,

ρ(ϕ(a)) ∩ cl minYd ⊆ cl(ρ(ϕ(a)) ∩minYd) ⊆ ϕ(a).

Thus, for each x ∈ ρ(ϕ(a)),

↑x ∩ cl minYd ⊆ ρ(ϕ(a)) ∩ cl minYd ⊆ ϕ(a).

Consequently, x ∈ ϕ(ja) by Lemma 3.10(2).
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We conclude this section by describing the link between minYd and the localic

part of Nρ.

Proposition 6.12. The localic part Yρ of Nρ is the soberification of minYd.

Proof. The localic part of any L-space is the space of points of the associated

frame (see Remark 2.9). Thus, Yρ is the space of points of Ω(minYd), which is the

soberification of minYd (see, e.g. [25, p. 44]).

7. Compactness of the Maximal d-Spectrum

We now turn our attention to studying topological properties of minYd. As we

mentioned in the introduction, in [13] the second author only considered arithmetic

frames with a unit; that is, a compact dense element, where we recall (see the

paragraph before Proposition 3.14) that an element a ∈ L is dense if a∗∗ = 1. In

this section, we characterize units in the language of Priestley spaces and compare

the existence of a unit to compactness of minYd.

We start by characterizing compact subsets of minYd in terms of special Scott

upsets of X.

Definition 7.1. Let X be an arithmetic L-space and Y its localic part. A subset

Z ⊆ X is called d-initial if Z ∩ Y ⊆ ↑(Z ∩minYd).

Lemma 7.2. Let X be an arithmetic L-space and Y its localic part.

(1) A Scott upset F ⊆ X is d-initial iff F = ↑(F ∩minYd).

(2) If F ⊆ X is a d-initial Scott upset, then F ∩minYd is compact.

(3) If K ⊆ minYd is compact then ↑K is a d-initial Scott upset.

Proof. (1) The right-to-left implication is immediate. For the left-to-right impli-

cation, let F be a d-initial Scott upset. Then minF ⊆ F ∩ Y ⊆ ↑(F ∩minYd), and

hence F = ↑minF = ↑(F ∩minYd).

(2) Suppose that F ∩ minYd ⊆
⋃

(Ui ∩ minYd) for a family {Ui} ⊆ ClopUp(X).

Then F ∩minYd ⊆
⋃
Ui, and so F ⊆

⋃
Ui by (1). Since F is closed, it is compact,

and hence F ⊆ Ui1 ∪ · · · ∪ Uin for some i1, . . . , in. Therefore,

F ∩minYd ⊆ (Ui1 ∩minYd) ∪ · · · ∪ (Uin ∩minYd),

and hence F ∩minYd is compact.

(3) Clearly, ↑K is d-initial. Thus, it suffices to show that ↑K is a Scott upset. Since

min ↑K = K ⊆ minYd, it is enough to show that ↑K is closed. Let x /∈ ↑K. Then

y 6≤ x for all y ∈ K. By Priestley separation, there is Uy ∈ ClopUp(X) such that

y ∈ Uy and x 6∈ Uy. Therefore, K ⊆
⋃

(Uy ∩minYd), so by compactness of K there

is U ∈ ClopUp(X) such that ↑K ⊆ U and x /∈ U . Thus, ↑K is closed.
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As an immediate consequence, we have:

Proposition 7.3. Let X be an arithmetic L-space and K ⊆ minYd. The following

are equivalent:

(1) K is compact.

(2) ↑K is a d-initial Scott upset.

(3) There is a d-initial Scott upset F ⊆ X such that K = F ∩minYd.

Theorem 7.4. Let X be an arithmetic L-space. There is a poset isomorphism

between compact subsets of minYd and d-initial Scott upsets of X (both ordered by

inclusion).

Proof. Consider the maps F 7→ F ∩ minYd and K 7→ ↑K, where F ⊆ X is a d-

initial Scott upset andK ⊆ minYd is compact. These are well defined by Lemma 7.2,

and are clearly order preserving. It suffices to show that these maps are inverses

of each other. But F = ↑(F ∩minYd) by Lemma 7.2(1), and it is easy to see that

K = ↑K ∩minYd, completing the proof.

We recall (see, e.g. [31, p. 25]) that a frame is max-bounded if each proper element

is below a maximal element.

Proposition 7.5. Let L be an arithmetic frame and X its Priestley space. Then

Ld is max-bounded iff Nd is d-initial.

Proof. Since Ld is max-bounded iff every proper d-upset is contained in a maximal

d-upset (see Remark 6.2), it suffices to show that the latter condition is equivalent

to Nd being d-initial.

(⇒) Let y ∈ Nd ∩ Y . Then y ∈ Yd by Proposition 4.9(1), so X\↓y is a d-upset

by Lemma 6.4(1). Hence, there exists a maximal d-upset U such that X\↓y ⊆ U .

By Lemma 6.4(3), U = X\↓y′ for some y′ ∈ minYd. Thus, X\↓y ⊆ X\↓y′, which

implies that y′ ∈ ↓y′ ⊆ ↓y. Therefore, y′ ≤ y, as required.

(⇐) Let U be a proper d-upset. Then U = cl cored U 6= X, so Yd 6⊆ U by Lemma 6.3.

Hence, there is y ∈ Yd\U ⊆ Nd. Since Nd is d-initial, there is y′ ∈ minYd with

y′ ≤ y. Therefore, U ⊆ X\↓y′, which is a maximal d-upset by Lemma 6.4(2).

It is well known that if an arithmetic frame L has a unit, then Ld is max-

bounded (see, e.g. [13, before Proposition 3.3]). The following example shows that

Ld being max-bounded is a strictly weaker condition.

Example 7.6. Let L = ℘(N). Then L is an arithmetic frame, and da = a for all

a ∈ L since L is Boolean, so L = Ld. The maximal elements of Ld are exactly the

coatoms. Therefore, Ld is max-bounded since it is atomic. However, Ld does not

contain a unit since the only dense element is 1, which is not compact.
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We end this section by describing the Priestley analogue of having a unit and

its relation to compactness of minYd.

Theorem 7.7. Let L be an arithmetic frame and X its L-space. The following are

equivalent.

(1) There is a unit in L.

(2) There is a cofinal U ∈ ClopSUp(X).

(3) There is U ∈ ClopSUp(X) such that Yd ⊆ U .

The previous conditions imply the following equivalent conditions.

(4) ↑minYd is a Scott upset.

(5) minYd is compact.

If in addition Nd is d-initial, then all five conditions are equivalent.

Proof. (1)⇔ (2) By Remark 2.14, a ∈ K(L) iff ϕ(a) is a Scott upset. Moreover, a

is dense iff maxX ⊆ ϕ(a) by Lemma 3.10(5) and Proposition 3.14(2).

(2)⇔ (3) Suppose U ∈ ClopSUp(X) is cofinal and y ∈ Yd. Then

max ↑y ⊆ maxX ⊆ U,

so y ∈ U by Theorem 4.12(3). Therefore, Yd ⊆ U . Conversely, suppose Yd ⊆ U .

Then Nd = clYd ⊆ U since Nd is an SL-space. But Nd is cofinal by Lemma 3.16,

so maxX ⊆ U .

(3)⇒ (4) Since Nd is inductive, ↑(U ∩ Nd) is a Scott upset. Therefore,

min ↑(U ∩Nd) ⊆ Y , so

min ↑(U ∩Nd) ⊆ Y ∩Nd = Yd.

We show that min ↑(U ∩Nd) = minYd. If y ∈ min ↑(U ∩ Nd) and y′ ∈ Yd is such

that y′ ≤ y, then y′ ∈ U ∩Nd because Yd ⊆ U , so y = y′ since

y ∈ min ↑(U ∩Nd) = min(U ∩Nd).

Hence, min ↑(U ∩Nd) ⊆ minYd. Conversely, if y ∈ minYd and x ∈ ↑(U ∩Nd) with

x ≤ y, then there is y′ ∈ min ↑(U ∩ Nd) ⊆ Yd with y′ ≤ x ≤ y, so y = y′ since

y ∈ minYd. Consequently, minYd = min ↑(U ∩ Nd). Thus, ↑minYd = ↑(U ∩ Nd),
and hence ↑minYd is a Scott upset.

(4)⇔ (5) Since ↑minYd is d-initial, this follows from Proposition 7.3.

Finally, suppose that Nd is d-initial.

(5)⇒ (3) Since minYd is compact, the open cover {V ∩minYd |V ∈ ClopSUp(X)} of

minYd has a finite subcover, and since finite unions of clopen Scott upsets are clopen

Scott upsets, there is V ∈ ClopSUp(X) such that minYd ⊆ V . By Proposition 4.9(1),

Yd = Nd ∩ Y . Thus, since Nd is d-initial, Yd ⊆ ↑minYd ⊆ V .
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Remark 7.8. In Example 8.11, we will show that the assumption in Theorem 7.7

that Nd is d-initial is necessary. In fact, we will see that minYd may be compact

Hausdorff without L having a unit.

8. Hausdorffness of the Maximal d-Spectrum

In this final section, we give an example of an arithmetic frame L with a unit such

that maxLd is not Hausdorff, thus answering the question of [13] in the negative. In

addition, we characterize exactly when maxLd is Hausdorff. Our characterization

doesn’t require that L has a unit, only that maxLd is locally compact. Under this

assumption, we show that maxLd is Hausdorff iff it is stably locally compact, a

condition that plays an important role in domain theory (see [21, Sec. VI.6]).

Example 8.1. Consider the Stone-Čech compactification of the natural num-

bers βN. Partition the natural numbers in countably many countable sub-

sets N = X0 ∪X1 ∪X2 ∪ · · ·, where Xi = {xi,0, xi,1, xi,2, . . .}. Then for each Xi,

clXi is a clopen set of βN homeomorphic to βN (see, e.g. [18, p. 174]). Let

X∗i = cl(Xi)∩N∗ and let Yω = {y0, y1, y2, . . .}∪{ω} be the one-point compactifica-

tion of a copy of the natural numbers. Consider now the disjoint union X = βNtYω
and the partial order in Fig. 2, where X∗ω = N∗\

⋃
n∈NX

∗
n.

Our goal is to show that X is an arithmetic L-space such that minYd is not

Hausdorff. We have several things to verify.

Claim 8.2. X is a Priestley space.

Proof. X is a Stone space since it is the disjoint union of two Stone spaces. It

remains to be shown that X satisfies the Priestley separation axiom. For x ∈ βN
and x′ ∈ X with x 6≤ x′, finding a clopen upset containing x and missing x′ is easy

since βN is a clopen upset of X.

y0

x0,0 x0,1 x0,2
. . .

X∗0

y1

x1,0 x1,1 x1,2
. . .

X∗1

. . .

ω

X∗ω

Fig. 2. The Priestley space of an arithmetic frame whose maximal d-spectrum is not Hausdorff.
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Let y ∈ Yω and x ∈ X with y � x. Then x /∈ ↑ω, so x ∈ ↓(clXi) for some i such

that y 6= yi. Consider U = X\(↓ clXi). Since clXi is clopen, so is ↓ clXi. Thus, U

is a clopen upset separating y from x.

Claim 8.3. X is an L-space.

Proof. It is sufficient to show that clU is a clopen upset for each open upset

U ⊆ X. Let U be an open upset. Then U ∩ Yω is open, and it is either empty or

it must contain ω. In both cases, cl(U) ∩ Yω = U ∩ Yω, so clU = U ∪ cl(U ∩ βN),

which is clearly a clopen upset.

Claim 8.4. The localic part of X is Y = Yω ∪ N.

Proof. We have Y ∩ N∗ = ∅ since ↓x ∩ βN = {x} is not open for all x ∈ N∗, so

Y ⊆ Yω∪N. For the converse, if y ∈ Yω\{ω} then ↓y = {y} is clopen. Also, ↓ω = Yω
is clopen, so Yω ⊆ Y . For x ∈ Xi, we have ↓x = {x, yi} is clopen.

Claim 8.5. Let U ⊆ X be an upset. Then U ∈ ClopSUp(X) iff one of the following

two conditions holds.

(1) U is a finite subset of N.

(2) U ∩ Yω is cofinite, and yi /∈ U implies cl(Xi) ∩ U is a finite subset of Xi.

Proof. (⇒) Suppose U ∈ ClopSUp(X) and U ∩ Yω is not cofinite. Since U ∩ Yω is

clopen and not cofinite, ω 6∈ U . Hence, U ∩ Yω = ∅ since it is an upset. Therefore,

U ⊆ βN = clN. By Lemma 4.5(1), U ⊆ N and by compactness U is finite. Suppose

now that U ∩ Yω is cofinite. If yi /∈ U , then X∗i ∩ U = ∅, since otherwise U can’t

be Scott upset because minU 6⊆ Y (see Claim 8.3). Therefore, U ∩ clXi ⊆ Xi, and

it has to be finite since it is compact.

(⇐) If U is a finite subset of N, then U ∈ ClopUp(X) and U ⊆ Y by Claim 8.4,

so U ∈ ClopSUp(X). Now suppose (2) holds. Then ω ∈ U and yi /∈ U implies

X∗i ∩ U = ∅. Hence, minU ⊆ Yω ∪ N = Y , so it suffices to show that U is clopen.

Since U ∩ Yω is cofinite it is clopen in Yω. Moreover,

U ∩ βN =
⋃
{cl(Xi) ∩ U | yi 6∈ U} ∪

⋃
{clXi | yi ∈ U} ∪X∗ω.

By (2),
⋃
{cl(Xi) ∩ U | yi 6∈ U} =

⋃
{Xi ∩ U | yi 6∈ U} ⊆ N is finite and hence

clopen. Also, βN\(
⋃
{clXi | yi ∈ U} ∪ X∗ω) is clopen since only finitely many

yi /∈ U . Therefore,
⋃
{clXi | yi ∈ U} ∪ X∗ω is clopen. Thus, U ∩ βN is clopen,

and so U = (U ∩ Yω) ∪ (U ∩ βN) is clopen.

Claim 8.6. X is an algebraic L-space.

Proof. Suppose U ∈ ClopUp(X). We need to show U ⊆ cl core U , so suppose

x ∈ U . We consider three cases.
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(i) If x ∈ Yω then ω ∈ ↑x ⊆ U , so U ∩ Yω is cofinite. Then

x ∈ ↑(U ∩ Yω) ∈ ClopSUp(X)

by Claim 8.5(2), and ↑(U ∩ Yω) ⊆ coreU .

(ii) If x ∈ N, then ↑x = {x} ∈ ClopSUp(X) by Claim 8.5(1), and ↑x ⊆ coreU .

(iii) Suppose x ∈ N∗. Since U is clopen in X, U ∩ βN is clopen, and therefore

cl(U ∩ N) = U ∩ βN.

Hence, x ∈ cl(U ∩ N). Suppose now that V is a clopen neighborhood of

x. Then V ∩ (U ∩ N) 6= ∅, but U ∩ N =
⋃
{{n} |n ∈ N ∩ U} ⊆ coreU since

{n} ∈ ClopSUp(X) by Claim 8.5(1). Therefore, x ∈ cl coreU .

Claim 8.7. X is an arithmetic L-space.

Proof. It suffices to show that U ∩ V ∈ ClopSUp(X) for U, V ∈ ClopSUp(X) (see

Definition 2.15(1)), so suppose U, V ∈ ClopSUp(X). Then U and V satisfy one of

the two conditions of Claim 8.5. If either U or V is a finite subset of N, then so

is their intersection. Suppose U and V both satisfy Claim 8.5(2). Since a finite

intersection of cofinite sets is cofinite, U ∩ V ∩ Yω is cofinite. If yi /∈ U ∩ V , then

either yi /∈ U or yi /∈ V . Without loss of generality we may assume the former.

Then cl(Xi)∩U ∩V ⊆ cl(Xi)∩U is a finite subset of Xi. Thus, Claim 8.5(2) holds

for U ∩ V , and so U ∩ V ∈ ClopSUp(X).

Claim 8.8. minYd = Yω\{ω}.

Proof. Observe that for each y ∈ Y = N ∪ Yω, there is x ∈ maxX with

{y} = max(↓x ∩ Y ). Therefore, Yd = N ∪ Yω by Theorem 4.12(4). Consequently,

minYd = Yω\{ω}.

Claim 8.9. minYd is not Hausdorff.

Proof. ClopSUp(X) forms a basis of minYd because U ∩ Y = coreU ∩ Y for each

U ∈ ClopUp(X). Consequently, it follows from Claim 8.5(2) that minYd is equipped

with the cofinite topology, which is not Hausdorff since minYd is infinite.

Claims 8.7 and 8.9 yield the following:

Theorem 8.10. There exist arithmetic L-spaces X such that minYd is not Haus-

dorff.

As promised in Remark 7.8, we now demonstrate that minYd can be compact

Hausdorff without L having a unit.

Example 8.11. Redefine the order in the space X of Example 8.1 as in Fig 3.

A similar reasoning to the above yields that X is an arithmetic L-space and its
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y0

x0,0 x0,1 x0,2
. . .

X∗0

y1

x1,0 x1,1 x1,2
. . .

X∗1

ω

X∗ω

. . .

Fig. 3. The Priestley space of an arithmetic frame without a unit whose maximal d-spectrum is

compact Hausdorff.

localic part is Y := N ∪ (Yω\{ω}). Observe that Yd = Y and minYd = ∅, so it

is trivially compact Hausdorff. However, X has no cofinal clopen Scott upset since

X∗ω ⊆ maxX and ↓X∗ω ∩ Y = ∅. Consequently, X is the L-space of an arithmetic

frame without units.

To characterize when minYd is Hausdorff, we recall (see, e.g. [21, Definition VI-

6.7]) that a topological space X is coherent if the binary intersection of compact

saturated sets is compact. The space X is stably locally compact if it is sober,

locally compact, and coherent. A stably locally compact space is stably compact if

it is compact, and spectral if in addition compact open sets form a basis. It is well

known (see, e.g. [25, p. 75]) that a spectral space is Hausdorff iff it is T1. The next

lemma generalizes this result to stably locally compact spaces.

Lemma 8.12. If X is stably locally compact, then X is Hausdorff iff X is T1.

Proof. We only need to show the right-to-left implication. Suppose x, y ∈ X are

distinct. Let Kx = {K ⊆ X |K is a compact saturated neighborhood of x} and

define Ky similarly. It suffices to show that there exist Kx ∈ Kx and Ky ∈ Ky such

that Kx ∩ Ky = ∅. Since X is T1 and locally compact, for each z ∈ X distinct

from x, there is a compact saturated neighborhood K of x missing z. Therefore,⋂
Kx = {x}, and similarly

⋂
Ky = {y}. Consequently,

⋂
Kx ∩

⋂
Ky = ∅. By

[21, Lemma VI-6.4], there exists a finite K ⊆ Kx ∪Ky such that
⋂
K = ∅. Since X

is stably locally compact, Kx and Ky are directed. Therefore, there are Kx ∈ Kx
and Ky ∈ Ky such that Kx ∩Ky = ∅. Thus, X is Hausdorff.

Theorem 8.13. Let X be an arithmetic L-space such that minYd is locally com-

pact. Then minYd is Hausdorff iff minYd is stably locally compact.
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Proof. First suppose that X is Hausdorff. Then X is sober (see, e.g. [25, p. 43]).

Let K,M ⊆ X be compact saturated. Since X is Hausdorff, K,M are closed, so

K∩M is closed. Since it is a closed subset of a compact set, K∩M must be compact.

Thus, X is stably locally compact. Conversely, since minYd is T1 by Proposition 6.7,

minYd is Hausdorff by Lemma 8.12.

Corollary 8.14. Let L be an arithmetic frame with a unit and X its L-space.

(1) minYd is Hausdorff iff minYd is stably locally compact.

(2) maxLd is Hausdorff iff maxLd is stably locally compact.

Proof. We only prove (1) as (2) follows from (1) and Theorem 6.6. Since L has a

unit, minYd is compact by Theorem 7.7. First suppose that minYd is Hausdorff.

Then minYd is compact Hausdorff, and hence minYd is stably locally compact.

Conversely, if minYd is stably locally compact, then Theorem 8.13 applies, and

hence minYd is Hausdorff.

We conclude the paper with several interesting open problems:

• It remains open whether Theorem 8.13 can be reformulated as an equivalence

between sobriety and Hausdorffness. Note that in Example 8.1, minYd is locally

compact and coherent, but it fails to be Hausdorff solely because it is not sober.

• It also remains open whether minYd is always locally compact (and/or coher-

ent). In the absence of sobriety, local compactness of minYd is not equivalent to

Ω(minYd) being a continuous frame (see, e.g. [25, p. 310]). This disparity empha-

sizes the importance of sobriety in these considerations. Indeed, it is plausible

that in this setting sobriety alone implies Hausdorffness.

• Resolving the above questions requires developing a general method for identify-

ing which topological spaces can be realized as minYd. While each Stone space

can be realized as such, it remains open whether the same can be said about each

compact Hausdorff space (we note that it follows from [22] that each compact

Hausdorff quasi F-space can be realized this way).
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