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It is a classic result in pointfree topology that continuous frames are spatial.

In recent years, a more general approach to pointfree topology via
McKinsey—Tarski algebras has emerged.

We examine the classic result in this new setting.
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Continuous lattices

A (continuous) domain which is complete is called a continuous lattice.

A continuous lattice L which is distributive is a frame, i.e., a complete lattice
satisfying:
an\/S={ans|seS}

forallaeL and all ScL.

The lattice of open subsets Q(X) of a locally compact space X is a continuous
frame.
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Hofmann-Lawson duality

In fact, all continuous frames are of this form:

Theorem (Hofmann—Lawson?)

The category of continuous frames is dually equivalent to the category of locally
compact sober spaces. In particular, every continuous frame L is isomorphic to
Q(X) for some locally compact sober space X.

IK. H. Hofmann and J. D. Lawson. “Irreducibility and generation in continuous lattices”. In:
Semigroup Forum 13.4 (1976/77), pp. 307-353
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Hofmann-Lawson duality

In fact, all continuous frames are of this form:

Theorem (Hofmann—Lawson?)

The category of continuous frames is dually equivalent to the category of locally
compact sober spaces. In particular, every continuous frame L is isomorphic to
Q(X) for some locally compact sober space X.

A frame is called spatial if it is isomorphic to the opens of a topological space.

Every continuous frame is spatial. I

IK. H. Hofmann and J. D. Lawson. “Irreducibility and generation in continuous lattices”. In:
Semigroup Forum 13.4 (1976/77), pp. 307-353
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Pointfree topology

The idea of pointfree topology is to study topology without referring to points.

2P, T. Johnstone. “Tychonoff’s theorem without the axiom of choice”. In: Fund. Math. 113.1
(1981), pp. 21-35.

3B. Banaschewski and C. J. Mulvey. “Stone-Cech compactification of locales. I”. In: Houston
J. Math. 6.3 (1980), pp. 301-312.

4J. Picado and A. Pultr. Frames and locales. Frontiers in Mathematics. Birkhauser/Springer

Basel AG, Basel, 2012, pp. xx+398.
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Pointfree topology

The idea of pointfree topology is to study topology without referring to points.

This shift allows for:
> More algebraic reasoning about topological spaces.

» More constructive treatments of results (e.g., Tychonoff’s theorem? or the
existence of Cech—Stone compactifications®).
The common approach is to study frames*
sets.

, 1.e., generalized lattices of open

2P, T. Johnstone. “Tychonoff’s theorem without the axiom of choice”. In: Fund. Math. 113.1
(1981), pp. 21-35.
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Spatial frames

A filter F of a complete lattice L is completely prime if \/S € F implies
FnS#o.
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Spatial frames

A filter F of a complete lattice L is completely prime if \/S € F implies
FnS#o.

A frame is spatial when it has enough completely prime filters to separate its
elements, i.e., whenever a £ b there exists a completely prime filter F
containing a but missing b.

We think of completely prime filters as the points of a frame: a frame is
spatial precisely when it has enough points.

In this way, a topological space can be recovered from its frame of opens iff

every completely prime filter of that frame corresponds to a unique point of the
space. Such spaces are called sober.
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The adjunction

There is a well-known adjunction between the category Top of topological
spaces and the category Frm of frames.

Frm 220002 Top
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The adjunction

There is a well-known adjunction between the category Top of topological
spaces and the category Frm of frames.

This restricts to an equivalence between the category Sob of sober spaces and
the category SFrm of spatial frames.

Frm 220002 Top

| ]

SFrm -~~~ Sob

On the one hand, this shows that frames faithfully generalize sober spaces.

On the other, many spaces lie outside this picture since they are not sober.
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Alternative approach



McKinsey-Tarski algebras

Frame theory is not the only pointfree approach to topology.

5K. Kuratowski. “Sur opération A de ’Analysis Situs”. In: Fund. Math. 3.1 (1922),
pp. 182-199.
6J. C. C. McKinsey and A. Tarski. “The algebra of topology”. In: Ann. of Math. 45 (1944),

pp. 141-191.
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McKinsey-Tarski algebras

Frame theory is not the only pointfree approach to topology.

Instead of abstracting lattices of the form (U(X) to frames, one can abstract
powerset lattices P(X) (equipped with their topological interior) to complete
interior algebras.

This alternative, interior-based approach began with Kuratowski’s closure
axioms® and was further generalized by McKinsey and Tarski.®

Although it became central in modal logic, it was largely overlooked in
pointfree topology, but recent work reintroduced McKinsey—Tarski (MT)
algebras into the pointfree study of spaces:

5K. Kuratowski. “Sur l'opération A de 'Analysis Situs”. In: Fund. Math. 3.1 (1922),
pp. 182-199.
6J. C. C. McKinsey and A. Tarski. “The algebra of topology”. In: Ann. of Math. 45 (1944),
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Literature of this talk

» Ranjitha R. “McKinsey-Tarski algebras: an alternative pointfree approach to
topology”. PhD thesis. New Mexico State University, 2025

» G. Bezhanishvili and Ranjitha R. “McKinsey-Tarski algebras: an
alternative pointfree approach to topology”. In: Topology Appl. 339 (2023),
Paper No. 108689

> G. Bezhanishvili and Ranjitha R. “Local Compactness in MT-Algebras”. In:
Topology Proc. 66 (2025), pp. 15-48

» G. Bezhanishvili, Ranjitha R., A. L. Suarez, and J. Walters-Wayland. “The
Funayama envelope as the Tp-hull of a frame”. In: Theory Appl. Categ. 44
(2025), pp. 1106-1147

» G. Bezhanishvili, S. D. Melzer, Ranjitha R., and A. L. Suarez. “Local compactness
does not always imply spatiality”. In: Q&A in Gen. Top. (2026). To appear.
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MT-algebras

Definition

An MT-algebra M is a complete boolean algebra equipped with an interior
operator [J, i.e.,

O1=1, aAb)=0OaAlb, OOc=0a, andTa<a

for all a,b € M.
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MT-algebras

Definition

An MT-algebra M is a complete boolean algebra equipped with an interior
operator [J, i.e.,

O1=1, aAb)=0OaAlb, OOc=0a, andTa<a

for all a,b € M.

1. For each topological space X, the powerset P (X) (equipped with the
topological interior) forms an MT-algebra.

2. For every frame L, the booleanization N(L)-- of the frame of nuclei is an
MT-algebra. The box is determined by the embedding of L into N(L).
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spatial MT-algebra.
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Spatial MT-algebras

An MT-algebra of the form % (X) for some topological space X is called a
spatial MT-algebra.

Equivalently, an MT-algebra is spatial iff its boolean algebra is atomic.

We think of the atoms «t(M) as the points of an MT-algebra M. The sets of
the form {x € a.¢(M) | x <Oa} for a € M is a topology on wt(M).

For a topological space X, the atoms (% (X)) of P(X) are precisely the
singletons {x}, i.e., X = at(PX)).

No separation assumption on X is needed to recover it from its MT-algebra.
Compare this to the situation with frames, where a space can only be

recovered from its frame when it is sober.
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The MT-adjunction

Theorem ([BR23])

1. The assignments X — P(X) and M — wt(M) form an adjunction between
Top and the category MT of MT-algebras.
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The MT-adjunction

Theorem ([BR23])
1. The assignments X — P(X) and M — wt(M) form an adjunction between
Top and the category MT of MT-algebras.
2. This adjunction restricts to a dual equivalence between Top and the
category SMT of spatial MT-algebras.

MT 222702 Top

I

SMT <~~~ Top

In this sense, MT-algebras generalize all spaces.
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Open elements of an MT-algebra

For an MT-algebra M, call a € M open if a = Oa, and write O(M) for the set of
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Open elements of an MT-algebra

For an MT-algebra M, call a € M open if a = Oa, and write O(M) for the set of
open elements.

Since M is complete, O(M) forms a frame. In fact, we obtain:

Theorem ([BR23])

The assignment M — O(M) defines a functor © : MT — Frm which is essentially
surjective.

For every frame L, there exists an MT-algebra M such that 6(M) = L.

For instance, O(N(L)--) = L. Equivalently, the Funayama envelope F(L) of a
frame L.
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The Funayama envelope

A subset S of a complete lattice L has an exact join provided
anVS=Vi{ans|seS}foralla e L. Thus, a frame is a complete lattice where
every join is exact.

N. Funayama. “Imbedding infinitely distributive lattices completely isomorphically into
Boolean algebras”. In: Nagoya Math. J. 15 (1959), pp. 71-81
8. Gritzer. Lattice theory: foundation. Birkhauser/Springer Basel AG, Basel, 2011,

pPp. xxx+613.
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Theorem (Funayama”’)

Every lattice L can be embedded into a complete boolean algebra F(L) by a
lattice morphism that preserves exact joins and meets.

F(L) can be built by taking the MacNeille completion of the boolean envelope
of L.8 Hence, every element of (L) is of the form a = \/{u A —wv | u,v € L}.
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anVS=Vi{ans|seS}foralla e L. Thus, a frame is a complete lattice where
every join is exact.

Theorem (Funayama’)

Every lattice L can be embedded into a complete boolean algebra F(L) by a
lattice morphism that preserves exact joins and meets.

F(L) can be built by taking the MacNeille completion of the boolean envelope
of L.8 Hence, every element of (L) is of the form a = \/{u A —wv | u,v € L}.

For a frame L, the embedding L — %(L) induces an interior operator, turning
F(L) into an MT-algebra with 6(%(L)) = L.

N. Funayama. “Imbedding infinitely distributive lattices completely isomorphically into
Boolean algebras”. In: Nagoya Math. . 15 (1959), pp. 71-81

8. Gritzer. Lattice theory: foundation. Birkhauser/Springer Basel AG, Basel, 2011,
pPp. xxx+613.
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Uy < U such that £ <\ Uj.
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Local compactness in MT-algebras

Let M be an MT-algebra.

Definition
» keM is compact if k <\/ U for U < 6(M) implies that there exists a finite
Up € U such that £ </ Uy.

» M is locally compact provided
u=\V{veO®WM)|v<k<u for some compact £ € M} for all u € O(M).

» M is core compact provided O(M) is continuous.

Lemma ([BR25])

If M is locally compact, then M is core compact.

(The converse holds for sober MT-algebras.)
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The precursor to the main question
Question
Are locally compact MT-algebras spatial?

Counterexample

> Let B be a complete atomless boolean algebra.

» Equip B with an interior operator [0 such that the only open elements are
0 and 1.

» Then every element of M = (B,0) is compact, since there are only finitely
many opens.

»> Hence M is locally compact but not atomic, and therefore not spatial.

In a sense, the algebra is degenerate since its open part is trivial.

19/38



Local compactness is not enough

The previous example suggests that something in addition to local
compactness is needed for spatiality.
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Local compactness is not enough

The previous example suggests that something in addition to local
compactness is needed for spatiality.

Indeed, local compactness can easily be achieved by having few open elements.

Evidently, we want the MT-algebra to be determined in some sense by its
interior, or equivalently, by its open elements.

For this we generalize separation axioms of topological spaces to MT-algebras.
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Separation axioms weaker than or equal to T are infamously difficult (or even
impossible) to describe in the setting of frames.”

We saw that the category of spatial MT-algebras is dually equivalent to the
category of topological spaces, allowing a pointfree generalization of all
separation axioms.

The separation axioms T; for i =0, %, 1,2, 3,3%,4 were formulated in [BR23].
These formulations are faithful: a space X is T iff P(X) is a T;-algebra.

These definitions are also compatible with frame theory: under mild
assumptions (e.g., T1), M is T; iff O(M) is T; for i = 3,3%,4.

9J. Picado and A. Pultr. Separation in point-free topology. Birkhauser/Springer, Cham, 2021,

pPp. xxi+281.
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boolean algebra, every element is a join of
atoms.
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> In the pointfree world, this means: the
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Ty, Tp and T in spaces

Similarly, other lower separation axioms generalize to MT-algebras via the
following observations. Let X be a topological space.

> X is Ty iff {x} = N{U € QX) :x € Uy n{x} for all x € X.
» XisTp iff {x} = U N {x} for some U € Q(X) for all x € X.
> X is Ty iff {x} = {x} for all x e X.

> X is Ty iff {x} =N{U |x € U € QX)) for all x € X.

These conditions give the intuition for the separation in MT-algebras.
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Ty, Tp and T in MT-algebras

Let M be an MT-algebra and a € M. We call a closed if a = {$a := 70O-a, and
saturated if it is a meet of open elements.
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Ty, Tp and T in MT-algebras

Let M be an MT-algebra and a € M. We call a closed if a = Qa := -(-a, and
saturated if it is a meet of open elements.

> ais a Ty-element if a = s A ¢ for some saturated s and closed c.

» ais a Tp-element if @ = u A c for some open u and closed c.
> ais a 7Ti-element if it is closed.

> aisaTy-element ifa=A{Qu|a=<uecOWM)}.

Forie{0,1,D,2}, M is T; or a T;-algebra if each element is a join of T;-elements.

The higher separation axioms 7's—7'5 are defined similar to how they are
defined for frames.
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Tp and the Funayama envelope

If L is a frame, then %(L) is a Tp-algebra. In fact, an MT-algebra M is Tp iff
M = F(OWM)).
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Tp and the Funayama envelope

If L is a frame, then %(L) is a Tp-algebra. In fact, an MT-algebra M is Tp iff
M = F(OWM)).

There is a one-to-one correspondence between Tp-algebras and frames. I

This correspondence can be turned into a categorical equivalence by changing
the usual morphisms on MT-algebras, see [BRSW25].

In this sense, MT-algebras are a generalization of both topological spaces and
frames.
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Sobriety in MT-algebras

An MT-algebra M is sober if it is Ty and for each join-irreducible closed ¢ there
exists x € wt(M) such that ¢ = Ox.
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An MT-algebra M is sober if it is Ty and for each join-irreducible closed ¢ there
exists x € wt(M) such that ¢ = Ox.

Sobriety for MT-algebras behaves essentially as one would expect:

Proposition ([BR23])

Ts-algebras are sober.

Theorem ([BR25])
Let M be a sober MT-algebra. Then M is core-compact iff M is locally compact.

The Hofmann—Mislove Theorem generalizes to sober MT-algebras, see [BR25].
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Which locally compact MT-algebras are spatial?
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Sobriety and local compactness

Theorem ([BR23])
Let M be a sober Tp-algebra. Then M is spatial iff O(M) is spatial.

Corollary ([BR25])

1. Locally compact sober Tp-algebras are spatial.

2. Locally compact Ta-algebras are spatial.

v

1. Suppose M is a locally compact sober T'p-algebra. Then M is core-compact,
so O(M) continuous and hence spatial. Therefore, M is spatial since it is sober
and Tp.

2. This follows since T2-algebras are both sober and T'p. Ol

i
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The sober case and Raney extensions

The spatiality of locally compact sober MT-algebras was one of the main issues
motivating this work.

104 L. Suarez. “Raney extensions of frames as pointfree Ty spaces”. MA thesis. Universita
degli Studi di Padova, 2024.
L7 Jakl and A. L. Suarez. “Canonical extensions via fitted sublocales”. In: Appl. Categ.

Structures 33.2 (2025).
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The spatiality of locally compact sober MT-algebras was one of the main issues
motivating this work.

Since such algebras are spatial when Tp holds, any counterexample must not
be Tp. Examples like this cannot come from Funayama envelopes of frames as
those are always Tp.

Instead, we turn to Raney extensions!®. These are particular filter extensions
of frames!! as discussed by Tom&s Jakl on Tuesday.

Roughly speaking, just as frames correspond to lattices of open sets, Raney
extensions correspond to lattices of saturated sets.

104, 1. Suarez. “Raney extensions of frames as pointfree Ty spaces”. MA thesis. Universita
degli Studi di Padova, 2024.
L7 Jakl and A. L. Suarez. “Canonical extensions via fitted sublocales”. In: Appl. Categ.

Structures 33.2 (2025).
32/38



Raney extensions and T

Raney extensions play the same role for Tj-algebras as frames do for
Tp-algebras.

33/38



Raney extensions and T

Raney extensions play the same role for Tj-algebras as frames do for
Tp-algebras.

For any MT-algebra M, the lattice of saturated elements Sat(M) forms a Raney

extension. Conversely, for any Raney extension C, the Funayama envelope
F(C) is a Ty-algebra.

33/38



Raney extensions and T

Raney extensions play the same role for Tj-algebras as frames do for
Tp-algebras.

For any MT-algebra M, the lattice of saturated elements Sat(M) forms a Raney

extension. Conversely, for any Raney extension C, the Funayama envelope
F(C) is a Ty-algebra.

Theorem ([BRSW25])

There is a one-to-one correspondence between Raney extensions and
To-algebras.

33/38



Raney extensions and T
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For any MT-algebra M, the lattice of saturated elements Sat(M) forms a Raney

extension. Conversely, for any Raney extension C, the Funayama envelope
F(C) is a Ty-algebra.

Theorem ([BRSW25])

There is a one-to-one correspondence between Raney extensions and
To-algebras.

As with frames, this can be turned into a categorical equivalence. I
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The main example

Every frame has a largest Raney extension: its lattice of strongly exact filters.
We consider the largest Raney extension C of the frame Q(R), where R carries
the standard topology.

In this case, C is sober but not spatial. Therefore, M := F(C) is sober and not
spatial.

Lemma ((BMRS26])

Let M be a Ty-algebra. M is spatial (resp. sober) iff Sat(M) is spatial
(resp. sober).

Moreover, since O(M) = Q(R) is continuous, M is core-compact and sober, and
hence it is locally compact.

Theorem ([BMRS26])

There exist locally compact sober MT-algebras that are not spatial.
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Lemma ([(BMRS26])

Let M be a Ty-algebra. If k € M is nonzero and compact, then there exists an
atom x € M such that x <k.
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Lemma ([(BMRS26])

Let M be a Ty-algebra. If k € M is nonzero and compact, then there exists an
atom x € M such that x < k.

In the locally compact Tp setting, we can localize this lemma to every nonzero
element:

Theorem ([BMRS26])

If M is locally compact and Tp, then below every nonzero element there exists a
nonzero compact element.

Corollary ((BMRS26])
Locally compact Tp-algebras are spatial.
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Compactness and the axiom of choice

Theorem ([BMRS26])

The following conditions are equivalent to the axiom of choice.

1. Every nontrivial compact MT-algebra contains a nonzero minimal closed
element.

2. Every nontrivial compact Ty-algebra contains a closed atom.

3. Every nontrivial compact Tp-algebra contains a closed atom.

i

Is the condition that every nonempty compact Ty-space contains a closed
singleton equivalent to the axiom of choice?
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The spatiality of continuous frames

Theorem (see, e.g., [BMRS26])
Compact T1-algebras are spatial.

Isbell’s Spatiality Theorem states that compact subfit frames are spatial.
Subfit frames correspond precisely to T1-algebras. Consequently, Isbell’s
Spatiality Theorem can be derived from the spatiality of compact T';-algebras.

Question

Can we explain the spatiality of continuous frames via the spatiality of locally
compact T'p-algebras?

The problem is that core compact Tp-algebras need not be locally compact.
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Normal MT-algebras

Theorem ([BR23])

For all i €{0,D, 1,2,3,3%,5}, if M is a Tj-algebra, then wt(M) is a T;-space.

A Ti-algebra M is normal or a 7Ts-algebra if it for all closed ¢,d such that
¢ Ad =0 there exist u,v € O(M) such thatc<u,d <v,and uAv=0.

Question
If M is a T4-algebra, is wt(M) a T4-space?

Presumably the answer is no since subspaces of normal spaces need not be
normal.

44/38



The functor ©

The functor © : MT — Frm has no left or right adjoint.

Question
For which subcategories does the restriction of the functor have an adjoint?
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Pointfree dcpos

Posets correspond to Ty Alexandroff spaces.

Call an MT-algebra, Alexandroff if every saturated element is open. Think of
Alexandroff Ty-algebras as a pointfree version of posets.

Question

Describe when an Alexandroff Ty-algebra is a dcpo, and define the Scott
topology on it. Provide an example of a pointless dcpo.
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