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介绍
Introduction



Motivation

It is a classic result in pointfree topology that continuous frames are spatial.

In recent years, a more general approach to pointfree topology via
McKinsey–Tarski algebras has emerged.

We examine the classic result in this new setting.
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Continuous lattices

A (continuous) domain which is complete is called a continuous lattice.

A continuous lattice L which is distributive is a frame, i.e., a complete lattice
satisfying:

a∧∨
S= {a∧s | s ∈S}

for all a ∈L and all S⊆L.

Example
The lattice of open subsets Ω(X) of a locally compact space X is a continuous
frame.
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Hofmann–Lawson duality

In fact, all continuous frames are of this form:

Theorem (Hofmann–Lawson1)
The category of continuous frames is dually equivalent to the category of locally
compact sober spaces. In particular, every continuous frame L is isomorphic to
Ω(X) for some locally compact sober space X.

A frame is called spatial if it is isomorphic to the opens of a topological space.

Corollary
Every continuous frame is spatial.

1K. H. Hofmann and J. D. Lawson. “Irreducibility and generation in continuous lattices”. In:
Semigroup Forum 13.4 (1976/77), pp. 307–353
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Pointfree topology

The idea of pointfree topology is to study topology without referring to points.

This shift allows for:
Ï More algebraic reasoning about topological spaces.
Ï More constructive treatments of results (e.g., Tychonoff ’s theorem2 or the

existence of Čech–Stone compactifications3).

The common approach is to study frames4, i.e., generalized lattices of open
sets.

2P. T. Johnstone. “Tychonoff ’s theorem without the axiom of choice”. In: Fund. Math. 113.1
(1981), pp. 21–35.

3B. Banaschewski and C. J. Mulvey. “Stone-Čech compactification of locales. I”. In: Houston
J. Math. 6.3 (1980), pp. 301–312.

4J. Picado and A. Pultr. Frames and locales. Frontiers in Mathematics. Birkhäuser/Springer
Basel AG, Basel, 2012, pp. xx+398.
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existence of Čech–Stone compactifications3).

The common approach is to study frames4, i.e., generalized lattices of open
sets.

2P. T. Johnstone. “Tychonoff ’s theorem without the axiom of choice”. In: Fund. Math. 113.1
(1981), pp. 21–35.
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Spatial frames

A filter F of a complete lattice L is completely prime if
∨

S ∈F implies
F∩S ̸=∅.

A frame is spatial when it has enough completely prime filters to separate its
elements, i.e., whenever a≰ b there exists a completely prime filter F
containing a but missing b.

We think of completely prime filters as the points of a frame: a frame is
spatial precisely when it has enough points.

In this way, a topological space can be recovered from its frame of opens iff
every completely prime filter of that frame corresponds to a unique point of the
space. Such spaces are called sober.
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The adjunction

There is a well-known adjunction between the category Top of topological
spaces and the category Frm of frames.

This restricts to an equivalence between the category Sob of sober spaces and
the category SFrm of spatial frames.

Frm Top

SFrm Sob

On the one hand, this shows that frames faithfully generalize sober spaces.

On the other, many spaces lie outside this picture since they are not sober.
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替代方法
Alternative approach



McKinsey–Tarski algebras

Frame theory is not the only pointfree approach to topology.

Instead of abstracting lattices of the form Ω(X) to frames, one can abstract
powerset lattices P(X) (equipped with their topological interior) to complete
interior algebras.

This alternative, interior-based approach began with Kuratowski’s closure
axioms5 and was further generalized by McKinsey and Tarski.6

Although it became central in modal logic, it was largely overlooked in
pointfree topology, but recent work reintroduced McKinsey–Tarski (MT)
algebras into the pointfree study of spaces:

5K. Kuratowski. “Sur l’opération Ā de l’Analysis Situs”. In: Fund. Math. 3.1 (1922),
pp. 182–199.

6J. C. C. McKinsey and A. Tarski. “The algebra of topology”. In: Ann. of Math. 45 (1944),
pp. 141–191.
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5K. Kuratowski. “Sur l’opération Ā de l’Analysis Situs”. In: Fund. Math. 3.1 (1922),
pp. 182–199.

6J. C. C. McKinsey and A. Tarski. “The algebra of topology”. In: Ann. of Math. 45 (1944),
pp. 141–191.

10 / 38



McKinsey–Tarski algebras

Frame theory is not the only pointfree approach to topology.

Instead of abstracting lattices of the form Ω(X) to frames, one can abstract
powerset lattices P(X) (equipped with their topological interior) to complete
interior algebras.

This alternative, interior-based approach began with Kuratowski’s closure
axioms5 and was further generalized by McKinsey and Tarski.6

Although it became central in modal logic, it was largely overlooked in
pointfree topology, but recent work reintroduced McKinsey–Tarski (MT)
algebras into the pointfree study of spaces:
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Literature of this talk

Ï Ranjitha R. “McKinsey-Tarski algebras: an alternative pointfree approach to
topology”. PhD thesis. New Mexico State University, 2025

Ï G. Bezhanishvili and Ranjitha R. “McKinsey-Tarski algebras: an
alternative pointfree approach to topology”. In: Topology Appl. 339 (2023),
Paper No. 108689

Ï G. Bezhanishvili and Ranjitha R. “Local Compactness in MT-Algebras”. In:
Topology Proc. 66 (2025), pp. 15–48

Ï G. Bezhanishvili, Ranjitha R., A. L. Suarez, and J. Walters-Wayland. “The
Funayama envelope as the TD-hull of a frame”. In: Theory Appl. Categ. 44
(2025), pp. 1106–1147

Ï G. Bezhanishvili, S. D. Melzer, Ranjitha R., and A. L. Suarez. “Local compactness
does not always imply spatiality”. In: Q&A in Gen. Top. (2026). To appear.
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MT-algebras

Definition
An MT-algebra M is a complete boolean algebra equipped with an interior
operator □, i.e.,

□1= 1, □(a∧b)=□a∧□b, □□a=□a, and □a≤ a

for all a,b ∈M.

Example
1. For each topological space X, the powerset P(X) (equipped with the

topological interior) forms an MT-algebra.

2. For every frame L, the booleanization N(L)¬¬ of the frame of nuclei is an
MT-algebra. The box is determined by the embedding of L into N(L).
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Spatial MT-algebras

An MT-algebra of the form P(X) for some topological space X is called a
spatial MT-algebra.

Equivalently, an MT-algebra is spatial iff its boolean algebra is atomic.

We think of the atoms at(M) as the points of an MT-algebra M. The sets of
the form {x ∈at(M) | x≤□a} for a ∈M is a topology on at(M).

For a topological space X, the atoms at(P(X)) of P(X) are precisely the
singletons {x}, i.e., X ∼=at(P(X)).

No separation assumption on X is needed to recover it from its MT-algebra.
Compare this to the situation with frames, where a space can only be
recovered from its frame when it is sober.
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The MT-adjunction

Theorem ([BR23])
1. The assignments X 7→P(X) and M 7→at(M) form an adjunction between

Top and the category MT of MT-algebras.

2. This adjunction restricts to a dual equivalence between Top and the
category SMT of spatial MT-algebras.

MT Top

SMT Top

In this sense, MT-algebras generalize all spaces.
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MT

Top Frm

Sob/SFrmSMT ?
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Open elements of an MT-algebra

For an MT-algebra M, call a ∈M open if a=□a, and write O(M) for the set of
open elements.

Since M is complete, O(M) forms a frame. In fact, we obtain:

Theorem ([BR23])
The assignment M 7→O(M) defines a functor O : MT→Frm which is essentially
surjective.

For every frame L, there exists an MT-algebra M such that O(M)∼=L.

For instance, O(N(L)¬¬)∼=L. Equivalently, the Funayama envelope F(L) of a
frame L.
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The Funayama envelope

A subset S of a complete lattice L has an exact join provided
a∧∨

S=∨
{a∧s | s ∈S} for all a ∈L. Thus, a frame is a complete lattice where

every join is exact.

Theorem (Funayama7)
Every lattice L can be embedded into a complete boolean algebra F(L) by a
lattice morphism that preserves exact joins and meets.

F(L) can be built by taking the MacNeille completion of the boolean envelope
of L.8 Hence, every element of F(L) is of the form a=∨

{u∧¬v | u,v ∈L}.

For a frame L, the embedding L ,→F(L) induces an interior operator, turning
F(L) into an MT-algebra with O(F(L))∼=L.

7N. Funayama. “Imbedding infinitely distributive lattices completely isomorphically into
Boolean algebras”. In: Nagoya Math. J. 15 (1959), pp. 71–81

8G. Grätzer. Lattice theory: foundation. Birkhäuser/Springer Basel AG, Basel, 2011,
pp. xxx+613.
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For a frame L, the embedding L ,→F(L) induces an interior operator, turning
F(L) into an MT-algebra with O(F(L))∼=L.

7N. Funayama. “Imbedding infinitely distributive lattices completely isomorphically into
Boolean algebras”. In: Nagoya Math. J. 15 (1959), pp. 71–81

8G. Grätzer. Lattice theory: foundation. Birkhäuser/Springer Basel AG, Basel, 2011,
pp. xxx+613.
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Local compactness in MT-algebras

Let M be an MT-algebra.

Definition
Ï k ∈M is compact if k≤∨

U for U ⊆O(M) implies that there exists a finite
U0 ⊆U such that k≤∨

U0.

Ï M is locally compact provided
u=∨

{v ∈O(M) | v≤ k≤ u for some compact k ∈M} for all u ∈O(M).
Ï M is core compact provided O(M) is continuous.

Lemma ([BR25])
If M is locally compact, then M is core compact.

(The converse holds for sober MT-algebras.)
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The precursor to the main question

Question
Are locally compact MT-algebras spatial?

Counterexample
Ï Let B be a complete atomless boolean algebra.
Ï Equip B with an interior operator □ such that the only open elements are

0 and 1.
Ï Then every element of M = (B,□) is compact, since there are only finitely

many opens.
Ï Hence M is locally compact but not atomic, and therefore not spatial.

In a sense, the algebra is degenerate since its open part is trivial.
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Local compactness is not enough

The previous example suggests that something in addition to local
compactness is needed for spatiality.

Indeed, local compactness can easily be achieved by having few open elements.

Evidently, we want the MT-algebra to be determined in some sense by its
interior, or equivalently, by its open elements.

For this we generalize separation axioms of topological spaces to MT-algebras.
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Separation axioms in pointfree topology

Separation axioms weaker than or equal to T2 are infamously difficult (or even
impossible) to describe in the setting of frames.9

We saw that the category of spatial MT-algebras is dually equivalent to the
category of topological spaces, allowing a pointfree generalization of all
separation axioms.

The separation axioms Ti for i= 0, 1
2 ,1,2,3,31

2 ,4 were formulated in [BR23].
These formulations are faithful: a space X is Ti iff P(X) is a Ti-algebra.

These definitions are also compatible with frame theory: under mild
assumptions (e.g., T1), M is Ti iff O(M) is Ti for i= 3,31

2 ,4.

9J. Picado and A. Pultr. Separation in point-free topology. Birkhäuser/Springer, Cham, 2021,
pp. xxi+281.
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MT-style thinking about separation

In a topological space, every subset is a union
of singletons. Analogously, in an atomic
boolean algebra, every element is a join of
atoms.

This perspective allows us to describe
separation axioms in terms of properties of a
join-generating set.
Ï In a T1 space, singletons are closed.
Ï In the pointfree world, this means: the

closed elements join-generate the algebra.
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T0, TD and T1 in spaces

Similarly, other lower separation axioms generalize to MT-algebras via the
following observations.

Let X be a topological space.
Ï X is T0 iff {x}=⋂

{U ∈Ω(X) : x ∈U}∩ {x} for all x ∈X.
Ï X is TD iff {x}=U∩ {x} for some U ∈Ω(X) for all x ∈X.
Ï X is T1 iff {x}= {x} for all x ∈X.
Ï X is T2 iff {x}=⋂

{U | x ∈U ∈Ω(X)} for all x ∈X.

These conditions give the intuition for the separation in MT-algebras.
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T0, TD and T1 in MT-algebras

Let M be an MT-algebra and a ∈M. We call a closed if a=♢a :=¬□¬a, and
saturated if it is a meet of open elements.

Definition
Ï a is a T0-element if a= s∧c for some saturated s and closed c.
Ï a is a TD-element if a=u∧c for some open u and closed c.
Ï a is a T1-element if it is closed.
Ï a is a T2-element if a=∧

{♢u | a≤u ∈O(M)}.

Definition
For i ∈ {0,1,D,2}, M is Ti or a Ti-algebra if each element is a join of Ti-elements.

Remark
The higher separation axioms T3–T5 are defined similar to how they are
defined for frames.
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TD and the Funayama envelope

If L is a frame, then F(L) is a TD-algebra. In fact, an MT-algebra M is TD iff
M ∼=F(O(M)).

Theorem
There is a one-to-one correspondence between TD-algebras and frames.

Remark
This correspondence can be turned into a categorical equivalence by changing
the usual morphisms on MT-algebras, see [BRSW25].

In this sense, MT-algebras are a generalization of both topological spaces and
frames.
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Sobriety in MT-algebras

Definition
An MT-algebra M is sober if it is T0 and for each join-irreducible closed c there
exists x ∈at(M) such that c=♢x.

Sobriety for MT-algebras behaves essentially as one would expect:

Proposition ([BR23])
T2-algebras are sober.

Theorem ([BR25])
Let M be a sober MT-algebra. Then M is core-compact iff M is locally compact.

Remark
The Hofmann–Mislove Theorem generalizes to sober MT-algebras, see [BR25].
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主要问题
The main question



Which locally compact MT-algebras are spatial?

T0 ?

TD ? Sober ?

T1 ? TD +Sober ?

T2 ?
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Sobriety and local compactness

Theorem ([BR23])
Let M be a sober TD-algebra. Then M is spatial iff O(M) is spatial.

Corollary ([BR25])
1. Locally compact sober TD-algebras are spatial.

2. Locally compact T2-algebras are spatial.

Proof.
1. Suppose M is a locally compact sober TD-algebra. Then M is core-compact,
so O(M) continuous and hence spatial. Therefore, M is spatial since it is sober
and TD.
2. This follows since T2-algebras are both sober and TD.
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The sober case and Raney extensions

The spatiality of locally compact sober MT-algebras was one of the main issues
motivating this work.

Since such algebras are spatial when TD holds, any counterexample must not
be TD. Examples like this cannot come from Funayama envelopes of frames as
those are always TD.

Instead, we turn to Raney extensions10. These are particular filter extensions
of frames11 as discussed by Tomáš Jakl on Tuesday.

Roughly speaking, just as frames correspond to lattices of open sets, Raney
extensions correspond to lattices of saturated sets.

10A. L. Suarez. “Raney extensions of frames as pointfree T0 spaces”. MA thesis. Università
degli Studi di Padova, 2024.

11T. Jakl and A. L. Suarez. “Canonical extensions via fitted sublocales”. In: Appl. Categ.
Structures 33.2 (2025).
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Raney extensions and T0

Raney extensions play the same role for T0-algebras as frames do for
TD-algebras.

For any MT-algebra M, the lattice of saturated elements Sat(M) forms a Raney
extension. Conversely, for any Raney extension C, the Funayama envelope
F(C) is a T0-algebra.

Theorem ([BRSW25])
There is a one-to-one correspondence between Raney extensions and
T0-algebras.

Remark
As with frames, this can be turned into a categorical equivalence.
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The main example

Every frame has a largest Raney extension: its lattice of strongly exact filters.

We consider the largest Raney extension C of the frame Ω(R), where R carries
the standard topology.

In this case, C is sober but not spatial. Therefore, M :=F(C) is sober and not
spatial.

Lemma ([BMRS26])
Let M be a T0-algebra. M is spatial (resp. sober) iff Sat(M) is spatial
(resp. sober).

Moreover, since O(M)=Ω(R) is continuous, M is core-compact and sober, and
hence it is locally compact.

Theorem ([BMRS26])
There exist locally compact sober MT-algebras that are not spatial.
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Which locally compact MT-algebras are spatial?
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The TD case

Lemma ([BMRS26])
Let M be a T0-algebra. If k ∈M is nonzero and compact, then there exists an
atom x ∈M such that x≤ k.

In the locally compact TD setting, we can localize this lemma to every nonzero
element:

Theorem ([BMRS26])
If M is locally compact and TD, then below every nonzero element there exists a
nonzero compact element.

Corollary ([BMRS26])
Locally compact TD-algebras are spatial.
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附录
Addendum



Compactness and the axiom of choice

Theorem ([BMRS26])
The following conditions are equivalent to the axiom of choice.

1. Every nontrivial compact MT-algebra contains a nonzero minimal closed
element.

2. Every nontrivial compact T0-algebra contains a closed atom.

3. Every nontrivial compact TD-algebra contains a closed atom.

Question
Is the condition that every nonempty compact T0-space contains a closed
singleton equivalent to the axiom of choice?
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The spatiality of continuous frames

Theorem (see, e.g., [BMRS26])
Compact T1-algebras are spatial.

Isbell’s Spatiality Theorem states that compact subfit frames are spatial.
Subfit frames correspond precisely to T1-algebras. Consequently, Isbell’s
Spatiality Theorem can be derived from the spatiality of compact T1-algebras.

Question
Can we explain the spatiality of continuous frames via the spatiality of locally
compact TD-algebras?

The problem is that core compact TD-algebras need not be locally compact.
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Normal MT-algebras

Theorem ([BR23])
For all i ∈ {0,D,1,2,3,31

2 ,5}, if M is a Ti-algebra, then at(M) is a Ti-space.

A T1-algebra M is normal or a T4-algebra if it for all closed c,d such that
c∧d= 0 there exist u,v ∈O(M) such that c≤ u, d≤ v, and u∧v= 0.

Question
If M is a T4-algebra, is at(M) a T4-space?

Presumably the answer is no since subspaces of normal spaces need not be
normal.
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The functor O

The functor O : MT→Frm has no left or right adjoint.

Question
For which subcategories does the restriction of the functor have an adjoint?
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Pointfree dcpos

Posets correspond to T0 Alexandroff spaces.

Call an MT-algebra, Alexandroff if every saturated element is open. Think of
Alexandroff T0-algebras as a pointfree version of posets.

Question
Describe when an Alexandroff T0-algebra is a dcpo, and define the Scott
topology on it. Provide an example of a pointless dcpo.
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