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Warning

I provide these notes for the convenience of my students. Be aware that there might be mistakes
and oversights in the text. When reading these notes you might first want to go over the material
in the appendix.

If you find any typos/errors please let me now.
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1.1 Sets of Real Numbers and the Cartesian Plane

Definition 1.1.1. An interval is the collection of all real numbers between two given real numbers
(including or excluding those particular numbers).

Notation 1.1.2. Let a, b ∈ R and a < b. There are three ways of writing an interval.

Set of real numbers Interval notation Real line

{x | a < x < b} (a, b) a b

{x | a ⩽ x < b} [a, b) a b

{x | a < x ⩽ b} (a, b] a b

{x | a ⩽ x ⩽ b} [a, b] a b

{x | x < b} (−∞, b) b

{x | a < x} (a,∞) a

{x | x ⩽ b} (−∞, b] b

{x | a ⩽ x} [a,∞) a

R (−∞,∞)

Example 1.1.3. Intervals can be used in many ways to define segments of the real line.

Set of real numbers Interval notation Real line

{x | −2 < x < 4} (−2, 4) −2 4
{x | 1 ⩽ x < 3} (1, 3] 1 3
{x | x ⩽ 5} (−∞, 5] 5

{x | x ⩽ −2 or x ⩾ 2} (−∞,−2] ∪ [2,∞) −2 2
{x | x ≠ ±3} (−∞,−3) ∪ (−3, 3) ∪ (3,∞) −3 3
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Exercise. Express the following sets using interval notation. Simplify if possible.

{x | x < 1}a) {x | 0 ⩽ x < 1}b)
{x | x > 0} ∪ {x | x < 0}c) {x | x > −1} ∩ {x | x < 1}d)

Historical Note. Next, wewill introduce the Cartesian plane. The story goes that the Frenchmath-
ematican and philosopher René Descartes was lying in bed one night, watching a fly move across
the ceiling. He realized that he could describe the fly’s position by specifying how far it was from
two perpendicular walls in the room. This insight led him to the idea that any point in space could
be uniquely described by its distance along two perpendicular directions.

Definition 1.1.4. A point in the Cartesian plane is an ordered pair (x, y), where x, y ∈ R.

Example 1.1.5. Let’s plot some points in the Cartesian plane.

−6 −4 −2 2 4 6

−4

−2

2

4
(5, 4)(−2, 3)

(−5,−3)

(4.5,−1)

(5, 0)
0

x

y

Remark 1.1.6. There are four different quadrants on the plane. They are labeled with Roman
numerals and proceed counterclockwise around the plane:

Quadrant I
x > 0, y > 0

Quadrant II
x < 0, y > 0

Quadrant III
x < 0, y < 0

Quadrant IV
x < 0, y < 0

x

y

Exercise. In which quadrant do the points of the previous example lie?
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Remark 1.1.7. An important concept in the Cartesian plane is symmetry between points. Consider
the following graph.

A = (a, b)B = (−a, b)

C = (−a,−b) D = (a,−b)

x

y

There are three types of symmetry and reflections.

(x-axis) A andD are symmetric about the x-axis since they have the same x-coordinate but opposite
y-coordinates.

(y-axis) A and B are symmetric about the y-axis since they have the same y-coordinate but opposite
x-coordinates.

(origin) A and C are symmetric about the origin since they have opposite x- and y-coordinates.

Example 1.1.8. Let’s find the distance between the of points (1,−1) and (−3, 2). Consider the fol-
lowing graph:

d

(1,−1)

(−3, 2)

x

y

To find the distance we use the Pythagorean Theorem. Indeed it says that the distance d square
is equal to horizontal difference squared and the vertical difference squared. Thus, the distance d
between (−2, 3) and (1,−3) is

d =
√
(−3 − 1)2 + (5 − 2)2 =

√
(−4)2 + 32 =

√
16 + 9 =

√
25 = 5
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Exercise. Find the distance between the points (4,−4) and (−2, 1).

Example 1.1.9. Last, let’s find the point exactly between two points. In other words, the midpoint
on the line segment connecting two points. Let’s consider the points (−2, 3) and (1,−3). To find the
midpoint we can simply take the average of the respective coordinates. That is the x-coordinate of
the midpoint is −2 + 1

2 = −1
2 and the y-coordinate is 3 + −3

2 = 0.

(−2, 3)

(1,−3)

(−1
2 , 0)

x

y

Exercise. Find the midpoint of the line segment connecting the points (−2, 3) and (−4,−1).
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1.2 Relations

Definition 1.2.1. A relation is a set of points in the plane.

Remark 1.2.2. We have already seen how to graph points in the Cartesian plane. Naturally, to
graph relations we simply graph all the points that are elements of the relation.

Example 1.2.3. For example, to graph A = {(0, 0), (−3, 1), (4, 2), (−3, 2)} we just graph the four
points belonging to A.

−4 −3 −2 −1 1 2 3 4 5

1
2
3

(0, 0)(−3, 1)
(4, 2)

(−3, 2)

x

y

It is not always possible to graph every point individual. Consider B = {(x, 3) | x ∈ [−2, 4)}. There
are infinitely many points in B, so it would take quite a while to graph all of them. Observe, that
B contains all the points on the line connecting the points (−2, 3) and (4, 3). Therefore, we draw a
line from (−2, 3) and (4, 3) to graph B, and to indicate that (−2, 3) ∈ B is included and (4, 3) ∉ Bwe
use • and ◦, at the respective end points of the line segment.

−3 −2 −1 1 2 3 4 5

1
2
3

(4, 3)(−2, 3)

x

y

Last, we graph the relation C = {(x, y) | x ∈ [−1, 4) and y ∈ [−2, 1]}. Observe that C describes a
rectangle with corners at (−1,−2), (4,−2), (−1, 1), and (4, 1). We graph C by shading this rectangle.
For the edges we draw the lines that are contained in C and uses dashes for those that are not.

−2 −1 1 2 3 4 5

−3

−2

−1

1

2

x

y
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Exercise. Graph the following relations.

{(1, 3), (1, 1), (5,−2), (−1, 2), (4, 3)}a) {(x,−4) | 0 < x ⩽ 3}b)

Exercise. Describe the relations corresponding to the following graphs using set notation.

−2 −1 1 2 3 4

−3

−2

−1

1
x

y

a)

−1 1 2 3

1

2

3

0
x

y

b)

Definition 1.2.4. Let a ∈ R.

• The graph of the equation x = a is a vertical line through (a, 0).

• The graph of the equation y = a is a horizontal line through (0, a).

Example 1.2.5. Below is a graph of the vertical line x = 2 and the horizontal line y = −4

x = 2

y = −4

0
x

y

At what point do the lines intersect? What are the intercepts?

Definition 1.2.6. The graph of an equation is the graph of the set of pointswhich satisfy the equation.
That is, a point (x, y) is on the graph of an equation if and only if x and y satisfy the equation.

Example 1.2.7. To graph x + 2y = 1 we graph the relation {(x, y) | x + 2y = 1}. We will later see
that x + 2y = 1 is a linear equation, in other words, it describes a line. Thus, to draw it we must
simply find two points that satisfy the equation. To this, you could pick some random values for x
and solve for y (or vice versa). For example, (−1, 1) and (1, 0) are points that satisfy the equation.
We find the following graph.
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−4 −2 2 4

−2

2

0
x

y

Exercise. Graph the following equations.

x = 1a) y = −1b) x = yc)

Definition 1.2.8. Suppose you are given some graph.
• A point on the graph which is also on the x-axis is called an x-intercept of the graph.

• A point on the graph which is also on the y-axis is called an y-intercept of the graph.

Note 1.2.9. Note that intercepts are points, so they have to be written as ordered pairs.

Exercise. Find all the x- and y-intercepts of the following graphs.

x

y

a)

x

y

b)

x

y

c)
Remark 1.2.10. Given an equation involving x and y, we can find the intercepts of the graph ana-
lytically as follows:

• x-intercepts have the form (x, 0); set y = 0 in the equation and solve for x.

• y-intercepts have the form (0, y); set x = 0 in the equation and solve for y.

Example 1.2.11.

• Consider the equation 3x − y = 9. We will start by finding the y-intercept (which usually is
the easiest one). We set x = 0 to get

3(0) − y = 9 =⇒ −y = 9 =⇒ y = −9

For the x-intercept, we set y = 0 to get

3x − 0 = 9 =⇒ 3x = 9 =⇒ x = 3

Hence, the only y-intercept is (0,−9), and the only x-intercept is (3, 0).
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• Graphs can have multiple intercepts of each kind. Consider the equation x2 +y2 = 1. To find
the y-intercepts, we set x = 0 to get

02 + y2 = 1 =⇒ y2 = 1 =⇒ y = ±
√
1 = ±1

Thus, the y-intercepts are (0,−1) and (0, 1).
To find the x-intercepts, we set y = 0 to get

x2 + 02 = 1 =⇒ x2 = 1 =⇒ x = ±1

Thus, the y-intercepts are (0,−1) and (0, 1), and the x-intercepts are (−1, 0) and (1, 0).

• Graphs of equations can have no intercepts. Consider the equation xy = 1. Plugging in x = 0
or y = 0 gives an unsolvable equation. Thus, the graph of this equation has no intercepts.

Exercise. Find the x- and y-intercept(s) of the following graphs, if any exist.

y = 4x + 2a) x + y = 10b) x2 − y = 1c) y =
√
x − 1d)

8



1.3 Introduction to functions

Definition 1.3.1. A function is a relation in which each x-coordinate is matched with only one y-
coordinate.

Example 1.3.2.

• {(−2, 1), (1, 3), (1, 4), (3,−1)} is not a function since (1, 3) and (1, 4) are both in R. That means
there are two y-coordinates for a single x-coordinate.

• {(−2, 1), (1, 3), (2, 3), (3,−1)} is a function. Every x-coordinate that appears in a pair in S

matched with only one y-coordinate.

Exercise. Which of the following relations are functions?

{(−3, 4), (6, 8), (6, 6)}a) {(7, 9), (9, 7), (6,−3)}b)
{(x, y) | y = x2}c) {(x, y) | x = y2}d)

Remark 1.3.3. Consider the graphs of the relations from the previous example.

−2 −1 1 2 3
−1

1
2
3
4

x

y

Graph of R.

−2 −1 1 2 3
−1

1
2
3
4

x

y

Graph of S.
When two points of a relation have the same x-coordinate they lie on the same vertical line. Thus,
we can see from the graph that R is not a function; it contains two points on the same vertical line.
S does not have any points on the same vertical line.

Fact 1.3.4 (Vertical Line Test). A relation is a function if and only if no two points on its graph lie
on the same vertical line.

Example 1.3.5. Consider the following graphs of some relations.

x

y

Graph A

x

y

Graph B

x

y

Graph C

x

y

Graph D

Using the vertical line test we see that only Graphs A and D represent functions.
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Exercise. Determine which of the following graphs are functions:

x

y

x

y

x

y

x

y

Definition 1.3.6. Suppose f is a function.

(1) The domain of f is the set dom(f) := {x | (x, y) ∈ f}

(2) The range of f is the set ran(f) := {y | (x, y) ∈ f}

Remark 1.3.7. In other words, dom(f) is the set of x-coordinates of points on the graph of f, and
ran(f) is the set of y-coordinates of points on the graph of f.

Example 1.3.8.

• Let f = {(0, 3), (1, 1), (2, 4), (3, 1), (4, 5)}. Then dom(f) = {0, 1, 2, 3, 4} and ran(f) = {3, 1, 4, 5}.

• Let g = {(x, 1) | x ∈ R}. Then dom(g) = (−∞,∞) and ran(g) = {1}.

• Let h = {(0, 0), (0, 2)}. Then dom(h) and ran(h) do not exist since h is not a function.

Exercise. Determinewhether the following relations are functions. If they are find the domain and
range.

F = {(−2, 1), (−1, 3), (0, 1)}a) G = {(42, 1), (1, 42), (42, 42)}b) H = {(x, y) | y = x + 1}c)

Remark 1.3.9. It is easy to find the domain and range of a function f given its graph.

(1) To finddom(f), “project” the graph of f onto the x-axis. The set of values on the x-axis covered
by the graph is dom(f).

(2) To find ran(f), “project” the graph of f onto the y-axis. The set of values on the y-axis covered
by the graph is ran(f).

Example 1.3.10.

• Suppose the function f has the following graph.
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−3 −2 −1 1 2 3
−1

1

2

3

0
x

y

Whenwe project the graph to the x- and y-axes we obtain the following red and blue graphs.
We see dom(f) = (−∞, 3) and ran(f) = [−1,∞).

• Suppose function g has the following graph.

−4 −3 −2 −1 1 2 3 4

1
2
3
4

0
x

y

After projecting, we see that dom(g) = (−∞,∞) and ran(g) = (1, 4].

Exercise. Determine the domain and range of the following functions. Give your answer in interval
notation.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

Graph of f Graph of g

11



1.4 Function notation

Remark 1.4.1. Functions usually describe processes. Mathematically, the process by which x-
coordinates are matched with y-coordinates. In this sense, the domain is the set of inputs and
the range is the the set of outputs. A function f is process which maps an input x to an output y.

Notation 1.4.2. Since the output of a function f is completely determined by the input x, we sym-
bolize the output with function notation: f(x), read “f of x.”

In other words, f(x) is the output which results by applying the process f to the input x. That is,
f(x) = y if and only if the pair (x, y) is in the relation that represents f.

Since the value of y is completely dependent on the choice of x, we usually call x the argument (or
independent variable) of f, whereas y is often called the dependent variable.

Remark 1.4.3 (Common mistake). Given a function f, the the parentheses in f(x) do not indicate
multiplication, as they do elsewhere in Algebra. This can cause confusion if the context is not clear,
so you must read carefully!

Example 1.4.4 (Function recipes). The process of a function f is usually described using an alge-
braic formula. Consider the following examples.

• Suppose a function f takes a real number and performs the following two steps, in sequence

i. add 3 ii. multiply by 5

If we choose 4 as our input, in step i we add 3 to get 4+3 = 7. In step ii, wemultiply our result
from step i by 5, which yields 7 · 5 = 35. Using function notation, we would write f(4) = 35
In general, if we use x for the input, applying the steps as before we find the term 5(x + 3).
Hence for an input x, we get the output f(x) = 5(x + 3).

• Suppose a function g is described by applying the following steps, in sequence

i. multiply by 2 ii. add 3 iii. divide by 4

We start with x and apply the steps in order. Step i gives us x · 2 = 2x. Step ii gives us 2x + 3.
Step iii gives us 2x + 3

4 . Hence g(x) = 2x + 3
4 .

Example 1.4.5. Conversely, given algebraic formula we can describe a process (function recipe).
For example, let f(x) = (3(x − 1) + 4)2. To understand what this function do we read the function
from inside out, i.e., look at the variable and see what mathematical operations are applied to it
first. We find the following steps:

i. subtract 1 ii. multiply by 3 iii. add 4 iv. square it

12



Exercise. For each of the following, find an expression for a function that performs the following
actions in order.

i: multiply by 2.
ii: add 3.
iii: take the square root.

a) i: add 3.
ii: multiply by 2.
iii: take the square root.

b) i: add 3.
ii: take the square root.
iii: multiply by 2.

c)

Remark 1.4.6. Note that it is not always possible to find a nice function recipe. Consider the func-
tion f(x) = (x − 2)(x − 3). Since there are instance of the variable x, we can’t really say what step is
done first. In a sense, we compute x − 2 and x − 3 in parallel and then multiply them together.

Example 1.4.7. Let f(x) = x2 − 3x − 4. There are many calculations we can do with functions.

f(0) = 02 − 3(0) − 4
= −4

• f(−4) = (−4)2 − 3(−4) − 4
= 16 + 12 − 4
= 24

•

f(★) = ★2 − 3★− 4• f(−x) = (−x)2 − 3(−x) − 4
= x2 + 3x − 4

•

f(3x) = (3x)2 − 3(3x) − 4
= 9x2 − 9x − 4

• 3f(x) = 3(x2 − 3x − 4)
= 3x2 − 9x − 12

•

f(x + 3) = (x + 3)2 − 3(x + 3) − 4
= x2 + 6x + 9 − 3x − 9 − 4
= x2 + 3x − 4

• f(x) + f(3) = x2 − 3x − 4 + 32 − 3(3) − 4
= x2 − 3x − 4 + 9 − 9 − 4
= x2 − 3x − 8

•

f
(x
3
)
=

(x
3
)2

− 3
(x
3
)
− 4

=
x2

9 − x − 4

• f(x)
3 =

x2 − 3x − 4
3

=
1
3x

2 − x − 4
3

•

Observe the differences between d) and e), f) and g), and h) and i). In no way does function
notation commute with basic operations!

Exercise. Let f(x) = 2x − 12. Evaluate and simplify the following expressions.

f(1)a) f(x + 1)b) f(♠)c)

Remark 1.4.8. Recall, the domain of a function is the set of x-coordinates in the corresponding
relation. If we define a a function with an algebraic expression it is not specified what the domain
is. Then how do we know what the set of inputs of the function is? We assume implicitly that the
domain is set of all real numbers such that the algebraic expression is well defined.
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Definition 1.4.9. Let f(x) = “expression using x” be a function. The implied domain of f is the set of
real numbers for which “expression using x” is defined.

Example 1.4.10.

• Let f(x) = 1
x
. Evaluating f(0) gives us a problem, because f(0) = 1

0 , but division by 0 is not
defined. Division is defined for all other values, so the domain of f is all the real numbers
but 0, i.e., dom(f) = (−∞, 0) ∪ (0,∞).

• Let h(x) =
2x

x + 1 . Again, we have division in our function, and since we can’t divide by
0 we must make sure that the denominator x + 1 ≠ 0 =⇒ x ≠ −1. Hence, dom(h) =

(−∞,−1) ∪ (−1,∞), that is, everything but −1.

• Let g(x) = √
x. Observe, f(−2) =

√
−2 = ?. We can’t take the square root of negative numbers.

In other words, dom(g) = [0,∞).

• Finding the implied domain can become quite complicated, consider i(x) = 1
1 −

√
x + 2

. For

the right hand side to be defined, we need 1 −
√
x + 2 ≠ 0 and x + 2 ⩾ 0. Observe,

1 −
√
x + 2 ≠ 0 =⇒ 1 ≠

√
x + 2 =⇒ 1 ≠ x + 2 =⇒ x ≠ −1

and
x + 2 ⩾ 0 =⇒ x ⩾ −2.

In interval notation, we need x to be in (−∞,−1) ∪ (1,∞) and in [−2,∞). Intersecting the two
gives us the domain: dom(i) = [−2,−1) ∪ (−1,∞).

Exercise. Find the domain of the following functions.

f(x) =
√
4x − 8a) g(x) = x2 + 1b) h(x) = 4

6 −
√
x + 3

c) r(x) = x2

x
d)

Remark 1.4.11. We should have found dom(r) = (−∞, 0) ∪ (0,∞) in the previous exercise. If we
had simplified r(x) = x2

x
= x, the we would have (erroneuously) found dom(r) = (−∞,∞). It is

crucial to find the implied domain before simplifying the function.

Notation 1.4.12 (Piecewise-defined functions). A piecewise-defined function or piecewise function is
a function in which more than one expression is used to define the output. Each formula has its
own domain, and the domain of the function is the union of all these smaller domains. We notate
this idea like this

f(x) =


expression 1 if x is in domain 1
expression 2 if x is in domain 2
expression 3 if x is in domain 3

The different lines in the equations are called cases.
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Example 1.4.13.

• Let f(x) =

7x + 3 if x ∈ (−∞, 0)
4 − 2x if x ∈ (0,∞)

Then
– f(−1) = 7(−1) + 3 = −7 + 3 = −4 since −4 ∈ (−∞, 0) falls into the first case.
– f(3) = 4 − 2(3) = 4 − 6 = −2 since −3 ∈ (0,∞) falls into the second case.
– f(0) is not defined because it falls in neither case.
– dom(f) = (−∞, 0) ∪ (0,∞) the union of both cases.

• Usually, in piecewise functions we do not use interval notation, e.g.

g(x) =


2 − x if x ⩽ 2
1

x−2 if 2 < x < 4
x − 4 if x ⩾ 4

Then
– g(1) = 2 − 1 = 1 since 1 ⩽ 2 (first case).
– g(2) = 2 − 2 = 0 since 2 ⩽ 2 (first case).

– g(3) = 1
2 − 3 =

1
−1 = −1 since 2 < 3 < 4 (second case).

– g(4) = x − 4 = 0 since 4 ⩾ 4 (third case).
– To find the dom(g), we need to write write the cases in interval notation and take the

union:
dom(g) = (−∞, 2] ∪ (2, 4) ∪ [4,∞) = (∞,∞).

• Note that expressions on the left do not always need to have a variable in them, e.g.

h(x) =

0 if x ⩽ 0
2x + 1 if x > 0

Then
– h(−4) = 0 since −4 ⩽ 0
– h(7) = 2(7) + 1 = 15 since 7 > 0

Exercise. Let f(x) =

2x − 1 if x < 2
42 if x ⩾ 2.

Evaluate and simplify the following expressions.

f(1)a) f(2)b) f(3)c)
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1.5 Function Arithmetic

Definition 1.5.1. Suppose f and g are functions and x ∈ dom(f)∩dom(g). We define the following
functions:

• The sum of f and g, denoted by f + g, is defined by the formula (f + g)(x) = f(x) + g(x).

• The difference of f and g, denoted by f − g, is defined by (f − g)(x) = f(x) − g(x).

• The product of f and g, denoted by fg, is defined by (fg)(x) = f(x)g(x).

• The quotient of f and g, denoted by f

g
, is defined by

(
f

g

)
(x) = f(x)

g(x) , provided g(x) ≠ 0.

Example 1.5.2. Let f(x) = x2 + 7 and g(x) = 3x − 1. Then

(f + g)(0) = f(0) + g(0)
= (02 + 7) + (3(0) − 1)
= (0 + 7) + (0 − 1)
= 7 + (−1)
= 7 − 1
= 6

(f − g)(1) = f(1) − g(1)
= (12 + 7) − (3(1) − 1)
= (1 + 7) + (3 − 1)
= 8 − 2
= 6

(fg)(−1) = f(−1)g(−1)
= ((−1)2 + 7)(3(−1) − 1)
= (1 + 7)(−3 − 1)
= 8(−4)
= −32

(
f

g

)
(2) = f(2)

g(2)

=
22 + 7
3(2) − 1

=
4 + 7
6 − 1

=
11
5

Exercise. Consider the following functions.

f(x) = 2x + 1 g(x) = 4 − x h(x) =
√
x + 6

Compute the following values, if they exist.

(f + g)(3)a) (g − f)(2)b) (fh)(3)c)
(
h

g

)
(−2)d)

Example 1.5.3. Let f(x) = x2 − 4 and g(x) = x + 2. Then

(f + g)(x) = f(x) + g(x)
= (x2 − 4) + (x + 2)
= x2 + x − 2

(g − f)(x) = g(x) − f(x)
= (x + 2) − (x2 − 4)
= x + 2 − x2 + 4
= −x2 + x + 6
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(gg)(x) = g(x)g(x)
= (x + 2)(x + 2)
= x2 + 2x + 2x + 4
= x2 + 4x + 4

(
f

g

)
(x) = f(x)

g(x)

=
x2

x + 2
=

(x + 2)(x − 2)
x + 2

= x − 2

Remark 1.5.4. The previous example might make you believe that
(
f

g

)
(−2) = −2 − 2 = −4. How-

ever, when we evaluate without this simplified expression we find:(
f

g

)
(−2) = f(−2)

g(−2) =
(−2)2 − 4
−2 + 2 =

0
0 = ?

Recall that
(
f

g

)
(x) is not defined for x such that g(x) = 0. Thus, −2 ∉ dom

(
f

g

)
.

In fact, to find the domain of such functions we proceed as we find the implied domain for any
function. However, we need to work with unsimplified functions.

Example 1.5.5. We saw
(
f

g

)
=

x2

x + 2 in the previous example. Thus, dom
(
f

g

)
is all the x such that

x + 2 ≠ 0. Solving that gives:
x + 2 ≠ 0 ⇐⇒ x ≠ −2.

Hence, dom
(
f

g

)
= (−∞,−2) ∪ (−2,∞).

Exercise. Let f(x) =
√
3x − 9 and g(x) = 4 − x. Determine the implied domain of the following

functions.

(f − g)(x)a)
(
f

g

)
(x)b)

Fact 1.5.6. Suppose f and g are functions.

• dom(f + g) = dom(f) ∩ dom(g).

• dom(f − g) = dom(f) ∩ dom(g).

• dom(fg) = dom(f) ∩ dom(g).

• dom
(
f

g

)
= dom(f) ∩ dom(g) ∩ {x | g(x) ≠ 0}.

Remark 1.5.7. By the previous fact, dom(f + g) = dom(f − g) = dom(fg), so finding one gives all
the others.
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Example 1.5.8. Suppose f(x) = 1
x and g(x) =

√
x. Then it is easy to find that dom(f) = (−∞, 0) ∪

(0,∞) and dom(g) = [0,∞). Intersecting gives dom(f) ∩ dom(g) = (0,∞). Consequently,

dom(f + g) = dom(f − g) = dom(fg) = (0,∞).
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1.6 Graphs of Functions

Definition 1.6.1. The graph of a function f is the graph of the equation y = f(x).

Remark 1.6.2. This is called the Fundamental Graphing Principle for Functions.

Fact 1.6.3. Let f be a function.

(1) The point (x, y) is on the graph of f if and only if y = f(x).

(2) The graph of a function is exactly the graph of the relation underlying the function.

Example 1.6.4. Let f(x) = x+2. Then the graph of f is the graph of the set {(x, x+2) | x ∈ (−∞,∞)}:

−4 −2 2 4

−4

−2

2

4

0
x

y

Example 1.6.5 (♠). Consider the graph of y = f(x) below.

−4 −2 2 4

−4

−2

2

4

0
x

y

We can find the following information by inspecting the graph:

• f(0) = −2, f(−2) = 0, f(−4) = 5, . . .

• dom(f) = [−4, 1) ∪ (1, 3] and ran(f) = [−2, 5]

• the x-intercepts are (−2, 0) and (2, 0)

• the y-intercept is (0,−2)
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Definition 1.6.6. Let f be a function. Then z ∈ dom(f) is a zero of f if f(z) = 0.

Fact 1.6.7. The following are equivalent.

(1) z is a zero of f.

(2) f(z) = 0.

(3) x = z is a solution to the equation f(x) = 0.

(4) (z, 0) is an x-intercept of the graph of f.

Example 1.6.8 (♠). The zeros of f are −2 and 2.

Exercise (♦). Suppose g is a function with the following graph.

−6 −4 −2 2 4 6

−4

−2

2

4

0
x

y

Find the following.

dom(g)a) ran(g)b) x-intercept(s)c) y-interceptd) zerose)

Remark 1.6.9. Recall, a set of real numbers is an interval if it is a line segment. For example,

(−3, 7) (0, 42] (−∞,−5) {5}

are intervals, but

(−2, 0) ∪ (0, 5) [0, 10] ∪ {15} (−∞,−10)∪(42,∞) {0, 1}

are not intervals.
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Definition 1.6.10. Suppose f is a function defined on an interval I. Then f is

• increasing on I if for all a, b ∈ Iwe have that a < b implies f(a) < f(b).

• decreasing on I if for all a, b ∈ Iwe have that a < b implies f(a) > f(b).

• constant on I if for all a, b ∈ Iwe have that f(a) = f(b).

We say f is increasing / decreasing / constant on an arbitrary set of real numbers if it is increasing /
decreasing / constant on all intervals contained in that set.

Example 1.6.11 (♠).

• f is increasing on [0, 1) and (1, 2], i.e., on [0, 1) ∪ (1, 2].

• f is decreasing on [−5, 0] ∪ [2, 3].

• f is not constant on any (nontrivial) interval, that is, it is only constant on singletons.

Exercise (♦). Determine on which intervals g is

increasingf) decreasingg) constanth)

Definition 1.6.12. Suppose f is a function with f(a) = b. The value b is called the

• maximum of f if b ⩾ f(x) for all x ∈ dom(f).

• minimum of f if b ⩽ f(x) for all x ∈ dom(f).

Example 1.6.13.

• (♠). The maximum of f is 5 and the minimum of f is −2.

• Let g(x) = x2. The minimum of g is 0 and g has no maximum.

• Let h(x) = x. h does neither have a maximum nor a minimum.

Remark 1.6.14. An interval is open if it can be written in interval notation using only round paren-
theses. That is, it can be written in one of the following forms: (a, b), (a,∞), (−∞, b), or (−∞,∞).

Definition 1.6.15. Suppose f is a function. Then a point (a, f(a)) on the graph of f is a

• local maximum of f if dom(f) contains an open interval I such that a ∈ I and for all x ∈ I we
have f(a) > f(x).

• local minimum of f if dom(f) contains an open interval I such that a ∈ I and for all x ∈ I we
have f(a) < f(x).

Example 1.6.16 (♠).

• f has a local maximum at (2, 0) and a local minimum at (0,−2).
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• (−4, 5) is not a local maximum of f since there is no open interval around −4 which is con-
tained in the domain of f. Similarly, (3,−1) is not a local minimum.

Exercise (♦). Find the following of g, if they exist.

the maximumi) the minimumj) local maximum(s)k) local minimum(s)l)

Definition 1.6.17. Odd and even functions Let f be a function. Then f is

• even if f(−x) = f(x) for all x ∈ dom(f).

• odd if f(−x) = −f(x) for all x ∈ dom(f).

Example 1.6.18.

• Let f(x) = 6x5 + 3x2 − 7. Then

f(x) = 6x5 + 3x2 − 7
f(−x) = 6(−x)5 + 3(−x)2 − 7 = −6x5 + 3x2 − 7
−f(x) = −(6x5 + 3x2 − 7) = −6x5 − 3x2 + 7

None of f(x), f(−x), −f(x) are equal, so f is neither even nor odd.

• Let g(x) = 4x3
10x2 − x4

. Then

g(x) = 4x3
10x2 − x4

g(−x) = 4(−x)3
10(−x)2 − (−x)4

=
−4x3

10x2 − x4

−g(x) = − 4x3
10x2 − x4

=
−4x3

10x2 − x4

We have g(−x) = −g(x), so g is odd.

• Let h(x) =
√
x8 + 3. Then

h(x) =
√
x8 + 3

h(−x) =
√
(−x)8 + 3 =

√
x8 + 3

−h(x) = −
√
x8 + 3

We have h(x) = −h(x), so h is even

Remark 1.6.19.

(1) We will see later why such functions are called respectively even and odd.

(2) Oddness and evenness of a function f corresponds to symmetries of the graph of f, see the
following fact.
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Fact 1.6.20. Let f be a function.

• f is even if and only if the graph of f is symmetric about the y-axis.

• f is odd if and only if the graph of f is symmetric about the origin.

Example 1.6.21. Consider the graphs of the functions of the previous example.

x

y

x

y

x

y

• The first graph has no symmetries, so the function is neither odd or nor even.

• The second graph is symmetric about the origin, hence the function is odd.

• The third graph is symmetric about the y-axis, hence the function is even.

Exercise. Determine whether the following functions are even, odd, both, or neither.

x

y

x

y

x

y

Remark 1.6.22. We have names for functions with graphs that are symmetric about the y-axis, and
functions with graphs that are symmetric about the origin. We do not have a name for functions
with a graph that is symmetric about the x-axis because such functions are not interesting. Namely,
if f is symmetric about the x-axis, then f(x) = −f(x) for all x ∈ dom(f). Solving this equality, we get
f(x) = 0. Hence, only trivial functions satisfy this symmetry.
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1.7 Transformations

Fact 1.7.1 (Vertical shifts). Let f be a function and k a positive number.

• To graph y = f(x) + k, shift the graph of y = f(x) up k units.

• To graph y = f(x) − k, shift the graph of y = f(x) down k units.

Example 1.7.2. Let f(x) = x2. Then y = f(x) + 1 and y = f(x) − 2 are plotted as follows.

−4 −2 2 4

2

4

x

y

f(x)
f(x) − 2
f(x) + 1

Fact 1.7.3 (Horizontal shifts). Let f be a function and k a positive number.

• To graph y = f(x + k), shift the graph of y = f(x) to the left k units.

• To graph y = f(x) − k, shift the graph of y = f(x) to the right k units.

Example 1.7.4. Let f(x) = x2. Then f(x + 2) and f(x − 1) are plotted below.

−4 −2 2 4

2

4

x

y

f(x)
f(x + 2)
f(x − 1)

Fact 1.7.5 (Reflections). Let f be a function.

• To graph y = −f(x), reflect the graph of y = f(x) about the x-axis.

• To graph y = f(−x), reflect the graph of y = f(x) about the y-axis.

• To graph y = −f(−x), reflect the graph of y = f(x) about the origin.
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Example 1.7.6. Let f(x) = √
x. Then f(−x), −f(x), and f − (−x) are plotted below.

−4 −2 2 4

−4

−2

2

4

x

y

√
x√
−x

−
√
x

−
√
−x

Fact 1.7.7 (Vertical scaling). Let f be a function and k a positive number.

• To graph y = kf(x), multiply all of the y-coordinates of points on the graph of f by k.
– If k > 1, we say that the graph of fhas undergone vertical stretching (or vertical expansion

or vertical dilation).
– If k < 1, we say that the graph of f has undergone vertical shrinking (or vertical compres-
sion or vertical contraction).

Example 1.7.8. Let f(x) = x3 + −1. Then y = 2f(x) and y = 1
2f(x) are plotted below.

−2 −1 1 2

−4

−2

2

4

x

y

f(x)
2f(x)
1
2f(x)

Fact 1.7.9 (Horizontal scalings). Let f be a function and k a positive number.

• To graph y = f(kx), divide all of the x-coordinates of points on the graph of f by k.
– If k < 1, we say that the graph of f has undergone horizontal stretching (or horizontal
expansion or horizontal dilation).

– If k > 1, we say that the graph of f has undergone horizontal shrinking (or horizontal
compression or horizontal contraction).
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Example 1.7.10. Let f(x) = xwith dom(f) = [−2, 2]. Then y = f(2x) and y = f(x2 ) are plotted below.

−4 −2 2 4

−4

−2

2

4

x

y

f(x)
f(2x)
f(x2 )

Fact 1.7.11. Let f(x) be a function and a, b, h, k ∈ (−∞,∞). If g(x) = af(bx+h) + k then to graph g,
sequentially do the following to the graph of f:

1. Horizontally shift by h. It is a left shift if h > 0, and a right shift if h < 0.

2. Horizontally scale by b. This is reflection about the y-axis if b < 0.

3. Vertically scale by a. This reflection about the x-axis if a < 0.

4. Vertically shift by k. This is an up shift if k > 0, and a down shift if k < 0.

Example 1.7.12. Consider the graph of the function f(x) below.

−4 −2 2 4

−4

−2

2

4

x

y
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We find the graph y = 2f(x + 1) + 2 in three
steps.
1. Shift left by 1

−4 −2 2 4

−4

−2

2

4

x

y

Graph of f(x + 1).

2. Scale vertically by 2

−4 −2 2 4

−4

−2

2

4

x

y

Graph of 2f(x + 1).

3. Shift up by 2

−4 −2 2 4

−4

−2

2

4

x

y

Graph of 2f(x + 1) + 2.

Similarly, we canfind the graphy = −f(2(x−
1))
1. Shrink horizontally by 2

−4 −2 2 4

−4

−2

2

4

x

y

Graph of f(2x).

2. Shift right by 1.

−4 −2 2 4

−4

−2

2

4

x

y

Graph of f(2(x − 1)).

3. Reflect about the x-axis.

−4 −2 2 4

−4

−2

2

4

x

y

Graph of −f(2(x − 1)).

We can conclude this section with the following table summarizing the discussed transformations.
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Transformation Appearance in Function Transformation of point

Shift up f(x) ↦→ f(x) + k (x, y) ↦→ (x, y + k)
Shift down f(x) ↦→ f(x) − k (x, y) ↦→ (x, y − k)
Shift left f(x) ↦→ f(x + k) (x, y) ↦→ (x − k, y)
Shift right f(x) ↦→ f(x − k) (x, y) ↦→ (x + k, y)
Reflection about x-axis f(x) ↦→ −f(x) (x, y) ↦→ (x,−y)
Reflection about y-axis f(x) ↦→ f(−x) (x, y) ↦→ (−x, y)
Reflection about origin f(x) ↦→ −f(−x) (x, y) ↦→ (−x,−y)
Vertical scaling f(x) ↦→ kf(x) (x, y) ↦→ (x, ky)
Horizontal scaling f(x) ↦→ f(kx) (x, y) ↦→ (xk , y)
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2.1 Linear Functions

Definition 2.1.1. (1) A function is linear if its graph is a line in the plane.

(2) The slope of a linear function is how much y differs per change of x.

Example 2.1.2.

• The slope of a linear function provided the graph can be seen as “raise over run.” Consider
the function f(x) = x

2 + 2.

−2 2 4

2

4

“run 2”
“raise 1”

x

y

We can see that the slope of the line is 1
2 . Every step on the x-axis, the line raises 1

2 on the
y-axis.

• The slope of the line y = 1 − 2x is −6
3 = −2:

−2 2 4 6

−6

−4

−2

2
“run 3”

“raise −6”

x

y

• The slope of the line connecting (x1 , y1) and (x2 , y2) is
y1 − y2
x1 − x2

.

• Not every line has a slope. Consider the line connecting (1, 3) and (1, 2).
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Exercise. Graph the following lines then find the slope.

The line through the points (−2, 4) and (3,−1)a) The horizontal line y = 2.b)

Fact 2.1.3.

(1) The line with slopem and y-intercept (0, b) is given by the equation y = mx+b. This is called
the slope-intercept form.

(2) The line with slopem through the point (a, b) is given by the equation y−a = m(x−b). This
is called the point-slope form.

Example 2.1.4. Consider the line through the point (2, 1) with slope 5.

• The point-slope form is easy to find: y − 1 = 5(x − 2).

• To find the slope-intercept form we first need to find the y-intercept.

y − 1 = 5(0 − 2) =⇒ y − 1 = 5(−2) =⇒ y − 1 = −10 =⇒ y = −9

Thus, the y-intercept is (0,−9) and the slope-intercept form is y = 5x − 9.

Remark 2.1.5. Thus, given a point (a, b) and the slopem it is easy to set up an equation for a line.
However, we need always given the slope. To write an equation for the line through the points
(a1 , b1) and (a2 , b2) we first need to find the slope.

Example 2.1.6. Consider the line through the points (−1,−3) and (2,−6).

• The slope is found by −3 − (−6)
−1 − 2 =

3
−3 = −1.

• Thus, point-slope forms are given by y + 3 = −(x + 1) and y − 2 = −(x + 6) depending on
which point is your favorite.

Exercise. Give an equation for the following lines. (Any form is fine)

The line with slopem = 2 through the point (−1, 2).a)
The line through the points (3, 1) and (1, 3).b)

Definition 2.1.7. Suppose f and g are linear functions with slopesm and n. Then f and g are

(1) parallel if m = n.

(2) perpendicular if mn = −1.

Example 2.1.8.

• y = 2x + 1 and y − 4 = 2(x − 7) are parallel because they have the same slope.

• y − 1 = 3x and y = − 1
3x + 5 are perpendicular because 3(−1

3 ) = −1.
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• y = 4x + 1 and y = −4x + 1 are not parallel because they have a different slope, and not
perpendicular because 4(−4) = −16 ≠ −1.

Remark 2.1.9. Two lines a perpendicular if their slopes are each others reciprocal with the opposite
sign. For example, if f has slopem = 2 and g has slope n = −1

2 thenmn = 2(−1
2 ) = −1, so they are

perpendicular.

Example 2.1.10. Consider the line f(x) = 3x + 1.

• Let’s find a linear function g that is parallel to f and goes through the point (1,−1). By the
definition we need the slope of g to be 3. Now we can apply the point-slope form to obtain
an equation:

y + 1 = 3(x − 1) =⇒ y = 3(x − 1) − 1 = 3x − 3 − 1 = 3x − 4

so g can be defined by g(x) = 3x − 4.

• To find a line that is perpendicular to f we need its slope to be the negative reciprocal of 3,
so − 1

3 . If the line should have y-intercept (0, 2) we can define it using slope-intercept form:
y = − 1

3x + 2.

Exercise. Find equations for the following lines.

The line that is parallel to the line y = 2x − 1, and passes through the point (1, 7).a)

The line that is perpendicular to the line y − 1 =
x − 2
4 , and passes through the point (2,−3).b)

Application 2.1.11. Suppose that two separate temperature readingswere taken at the the top ofA-
mountain: at 6 AM the temperature was 84°F and at 10 AM it was 92°F. Assuming the temperature
changes linearly, we can graph the following picture.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

76

80

84

88

92

96

100

time

°F
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• The slope of this line is 92 − 84
10 − 6 =

8
4 = 2.

• This means every hour the temperature increases by 2°F.

• We can set up the point-slope form and rewrite:

T (h) − 92 = 2(h − 10) =⇒ T (h) = 2h − 20 + 92 =⇒ T (h) = 2h + 72,

this defines a function T which gives the temperature for hour h.

• Now we can predict the temperature for example at noon:

T (12) = 2(12) + 72 = 24 + 72 = 96°F

Application 2.1.12. Suppose at a local robotic factory it costs $1000 to design a robot, and then an
additional $80 for each robot produced.

• Then the cost C, in dollars, to produce n robots is given by:

C(n) = 80n + 1000

• For example, to produce a line with 10 robots it costs

C(10) = 80(10) + 1000 = 1800$.

• Say the company had a startup budget of $15,000. We want to figure out how many robots
we can produce for that, so we need to solve

C(n) = 15000
80n + 1000 = 15000

80n = 14000
n = 175,

so for $15,000 the company can produce at most 175 robots.

• Assuming each robot sells for $100, we can calculate how many robots the company needs
to sell to make a profit. Namely, a formula for the income is P(n) = 100n. Then we need to
solve

C(n) < P(n)
80n + 1000 < 100n

1000 < 20n
50 < n,

so they need to sell more than 50 robots to make a profit.
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2.2 Absolute Value Function

Definition 2.2.1. For x ∈ (−∞,∞), define the absolute value by

|x| =

−x if x < 0
x if x ⩾ 0

Example 2.2.2.

|2| = 2
since 2 ⩾ 0

• |−12| = −(−12) = 12
since −12 < 0

• |0| = 0
since 0 ⩾ 0

•

Exercise. Evaluate the following.

| − 11|a) |42|b) | − 4 · 5|c) | − 4| · |5|d) |(−3)2 |e) | − 3|2f)

Remark 2.2.3.

(1) One can see the |x| as the distance between x and 0. For example, |5| = 5 since there are five
units between 5 and 0. Similarly, | − 5| is the distance is between −5 and 0, which is again 5.

(2) The graph of y = |x| is:

−5 −4 −3 −2 −1 1 2 3 4 5−1

1
2
3
4
5

x

y

(3) The domain of the absolute value function is (−∞,∞).

(4) The range of the absolute value function is [0,∞). It is always bigger or equal to 0.

Fact 2.2.4. Let a, b ∈ (−∞,∞) and n an integer. Then

|ab| = |a| · |b|
|an | = |a|n (need an defined)���a
b

��� = |a|
|b| (need b ≠ 0).

Example 2.2.5.

• |−2x| = |−2| · |x| = 2|x|
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• |(−3)3 | = |−3|3 = 33 = 27

•
����x2 − 1
−10

���� = |x2 − 1|
| − 10| =

|x2 − 1|
10

Example 2.2.6. Consider f(x) =


x − 5 if x < 0
2x if 0 ⩽ x ⩽ 10
x
2 if x > 10

. Then

f(x) = 8 =⇒


x − 5 = 8 if x < 0
2x = 8 if 0 ⩽ x ⩽ 10
x
2 = 8 if x > 10

Thus, there are three cases to solve:

(x < 0):
x − 5 = 8 =⇒ x = 13
Extraneous.

(0 ⩽ x ⩽ 10):
2x = 8 =⇒ x = 4

(x > 10):
x

2 = 8 =⇒ x = 16

Thus, the solutions are x = 4 and x = 16. (x = 13 is an extraneous solution)

Example 2.2.7. Solving equations involving absolute values is similar.

• |x| = 42 =⇒

−x = 42 if x < 0
x = 42 if x ⩾ 0

(x < 0): −x = 42 =⇒ x = −42 (x ⩾ 0): x = 42

Solutions: x = −42 and x = 42

• |x − 3| = 5 =⇒

−(x − 3) = 5 if x − 3 < 0
x − 3 = 5 if x − 3 ⩾ 0

(x−3 < 0): −(x − 3) = 5 =⇒ x − 3 = −5
=⇒ x = −2

(x − 3 ⩾ 0): x − 3 = 5 =⇒ x = 8

Solutions: x = −2 and x = 8

• |3x − 1| − 6 = 0 =⇒ |3x − 1| = 6 =⇒

−(3x − 1) = 6 if 3x − 1 < 0
3x − 1 = 6 if 3x − 1 ⩾ 0
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(3x − 1 < 0):
−(3x − 1) = 6 =⇒ 3x − 1 = −6

=⇒ 3x = −5

=⇒ x =
−5
3

(3x − 1 ⩾ 0):
3x − 1 = 6 =⇒ 3x = 7

=⇒ x =
7
3

Solutions: x = − 5
3 and x = 7

3

• 10 − |1 − x| = 21 =⇒ −|1 − x| = 11 =⇒ |1 − x| = −11 =⇒

−(1 − x) = −11 if 1 − x < 0
1 − x = −11 if 1 − x ⩾ 0

(1 − x < 0):
−(1 − x) = −11 =⇒ 1 − x = 11

=⇒ −x = 10
=⇒ x = −10

Extraneous.

(1 − x ⩾ 0):
1 − x = −11 =⇒ −x = −12

=⇒ x = 12
Extraneous.

Solutions: none.

Exercise. Solve the following equations

|x + 3| = 5a) |x| = −2b) |2x + 1| = 9c) 3 − |x| = 1d) |7x−1| −2 = 0e)

Example 2.2.8. We can use transformations to graph more complicated functions using absolute
values.

−4 −2 2 4

2

4

x

y

Graph of f(x) = |x − 2|

−4 −2 2 4

2

4

x

y

Graph of g(x) = |x + 1| + 2

−4 −2 2 4

2

4

x

y

Graph of h(x) = −|x + 1| + 3
From the functions we can now now easily get the domain/range, intercepts, zeros, extrema, etc.
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Function f(x) g(x) h(x)

Domain (−∞,∞) (−∞,∞) (−∞,∞)
Range [0,∞) [2,∞) (−∞, 3]
x-intercept(s) (2, 0) DNE (−4, 0) and (2, 0)
y-intercept (0, 2) (0, 3) (0, 2)
Interval(s) of increase [2,∞] [−1,∞) (−∞,−1]
Interval(s) of decrease (−∞, 2] (−∞,−1] [−1,∞)
Maximum DNE DNE 3
Minimum 0 2 DNE

Exercise. Graph the following functions.

f(x) = |x + 2|a) g(x) = −|x|b) h(x) = |x| + 1c)

Then find their domain, range, intercepts, (local) maxima/minima, intervals of increase/decrease,
zeros, etc.
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2.3 Quadratic Functions

Definition 2.3.1. A function f(x) is quadratic if it can be written in the form

f(x) = ax2 + bx + c,

where a, b, c ∈ (−∞,∞) and a ≠ 0. This is called the general form.

Example 2.3.2.

• f(x) = x2 is a quadratic function

• f(x) = 4x2 − 1 is a quadratic function

• f(x) = −x2 + x + 100 is a quadratic function

• f(x) = 3x − 4 is not a quadratic function (it is a linear function)

• f(x) = x3 is not a quadratic function

• f(x) = 2(x − 1)2 + 3 is a quadratic function (rewrite it to f(x) = 2x2 − 4x + 5)

Remark 2.3.3. Recall, the graph of f(x) = x2 is a parabola.

−3 −2 −1 1 2 3
−1

1

2

3

4

5

x

y

Every quadratic function can be obtained via transformations on f(x) = x2. Consequently, the
graph of every quadratic function is a parabola. Hence, every quadratic function has an increas-
ing interval and a decreasing interval. Consequently, every quadratic function has a unique local
minimum/maximum.

Definition 2.3.4. Let f(x) be a quadratic function.

(1) The vertex of f is the local minimum/maximum of f.

(2) The axis of symmetry of f is the vertical line through the vertex of f.
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Example 2.3.5.

• The vertex of f(x) = x2 is (0, 0), and the axis of symmetry is x = 0.

• The vertex of g(x) = (x + 2)2 is (−2, 0) (left shift by 2), and the axis of symmetry is x = −2.

• The vertex of h(x) = −4(x + 2)2 is (−2, 0) (vertical scale −4), and the axis of symmetry is
x = −2.

• The vertex of k(x) = −4(x+2)2+3 is (−2, 3) (up shift by 3), and the axis of symmetry is x = −2.

• The vertex of ℓ(x) = a(x + h)2 + k is (−h, k), and the axis of symmetry is x = −h.

Definition 2.3.6. The standard form (or vertex form) of a quadratic function f is

f(x) = a(x + h)2 + k.

Fact 2.3.7. Let f(x) = a(x + h)2 + k be a quadratic function in standard form.

(1) (−h, k) is the vertex of f.

(2) x = −h is the axis of symmetry of f.

(3) If a > 0 then the graph of f is an upward opening parabola ⋃-shape.

(4) If a < 0 then the graph of f is a downward opening parabola ⋂-shape

Example 2.3.8.

• The vertex of f(x) = 2(x− 10)2 − 3 is (10,−3), the axis of symmetry is x = 10and y = f(x) is an
upward opening parabola:

10−3

197

x

y

• The vertex of g(x) = 3(x+ 1)2 + 7 is (−1, 7), the axis of symmetry is x = −1, and y = g(x) is an
upward opening parabola:
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−1

7
10

x

y

• The vertex of h(x) = −3(x + 1
2 )2 − 1

4 is (−1
2 ,− 1

4 ), the axis of symmetry is x = − 1
2 and y = h(x)

is a downward opening parabola:

−0.5
−0.25

−1

x

y

Exercise. Find the vertex of f(x) = 3(x + 1)2 + 10

Exercise. Graph h(x) = −(x − 1)2 + 2.

Example 2.3.9 (Completing the square).

• Let f(x) = x2−2x+3. To find the vertex of f, we need to convert f into standard form. Observe,

f(x) = x2 − 2x + 3
= x2 − 2x + 1 − 1 + 3
= (x2 − 2x + 1) − 1 + 3
= (x − 1)(x − 1) − 1 + 3
= (x − 2)2 + 2

This method is called completing the square; we turned x2 − 2x into a square by adding 1. We
can now see that the vertex of f(x) is (2, 2).
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• Let g(x) = x2 + 6x + 1. Observe,

g(x) = x2 + 6x + 1
= (x2 + 6x + 9) − 9 + 1
= (x + 3)2 − 8,

so the vertex is (−3, 8).

• Let h(x) = 2x2 + 8x + 10. Observe,

h(x) = 2x2 + 8x + 10
= 2(x2 + 4x + 5)
= 2(x2 + 4x + 4 − 4 + 5)
= 2((x2 + 4x + 4) + 1)
= 2((x + 2)2 + 1)
= 2(x + 2)2 + 2,

so the vertex is (−2, 2).

• Let p(x) = −3x2 − 2x + 8. Observe,

p(x) = −3x2 − 2x + 8

= −3
(
x2 − 2x

−3 + 8
−3

)
= −3

(
x2 + 2

3x −
8
3

)
= −3

((
x2 + 2

3x +
1
9

)
− 1

9 − 8
3

)
= −3

((
x + 1

9

)2
− 1

9 − 8
3

)
= −3

((
x + 1

9

)2
− 1

9 − 24
9

)
= −3

((
x + 1

9

)2
− 25

9

)
= −3

(
x + 1

9

)2
+ (−3) · 259

= −3
(
x + 1

9

)2
+ 25

3 ,

so the vertex is (−1/9, 25/3).
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Exercise. Let g(x) = x2 − 8x + 11. Find the vertex form of g(x) by completing the square.

Example 2.3.10.

• Let f(x) = 2(x + 1)2 − 8. To find the x-intercepts, set f(x) = 0.

2(x + 1)2 − 8 = 0 =⇒ 2(x + 1)2 = 8
=⇒ (x + 1)2 = 4
=⇒ x + 1 =

√
4 or x + 1 = −

√
4

=⇒ x + 1 = 2 or x + 1 = −2
=⇒ x = 1 or x = −3

Thus, the x-intercepts are (−3, 0) and (1, 0).

• Let g(x) = x2 + 3x + 1
4 . Observe, it sis hard to find the x-intercepts in the usual way:

x2 + 3x + 1
4 = 0 =⇒ ?

We can use the completing square method to rewrite the LHS:

x2 + 3x + 1
4 = x2 + 3x + 9

4 − 9
4 + 1

4
=

(
x2 + 3x + 9

4

)
− 9

4 + 1
4

=

(
x + 3

2

)2
− 9

4 + 1
4

=

(
x + 3

2

)2
− 8

4

=

(
x + 3

2

)2
− 2,

Now we can find the x-intercepts:

x2 + 3x + 1 = 0 =⇒
(
x + 3

2

)2
− 2 = 0

=⇒
(
x + 3

2

)2
= 2

=⇒ x + 3
2 =

√
2 or x + 3

2 = −
√
2

=⇒ x =
√
2 − 3

2 or x = −
√
2 − 3

2 ,

so the x-intercepts are (
√
2 − 3

2 , 0) and (−
√
2 − 3

2 , 0). Recall, this means that x =
√
2 − 3

2 and
x = −

√
2 − 3

2 are the zeros of g(x).
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Fact 2.3.11 (Quadratic formula). Let f(x) = ax2 + bx + c.

(1) The zeros of f(x) are
x =

−b ±
√
b2 − 4ac
2a ,

provided b2 − 4ac ⩾ 0.

(2) If b2 − 4ac < 0 then f(x) has no zeros.

Example 2.3.12.

• Let g(x) = x2 + 3x + 1
4 . Then the zeros of g(x) are

x =
−b ±

√
b2 − 4ac
2a

=
−3 ±

√
32 − 4(1)( 14 )
2(1)

=
−3 ±

√
9 − 1

2

=
−3 ±

√
8

2

=
−3 ± 2

√
2

2
=

3
2 ±

√
2,

i.e., we found the same zeros as in the previous example.

• Let h(x) = x2 + 1. Then the zeros of h(x) are

x =
−b ±

√
b2 − 4ac
2a

=
−0 ±

√
02 − 4(1)(1)
2(1)

=
±
√
0 − 4
2

=
±
√
−4
2

= oops.

The first part of the fact does not apply since b2 − 4ac = 02 − 4(1)(1) = −4 < 0. By the second
part, h(x) has no zeros.
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3.1 Graphs of Polynomials

The aim of this section is to allows us to sketch the graph of any polynomial.

Definition 3.1.1. A polynomial function is a function of the form

f(x) = anx
n + an−1xn−1 + · · · + a2x2 + a1x + a0 ,

where n ⩾ 0 and all ai ∈ (−∞,∞). The domain of a polynomial function is (−∞,∞).

Fact 3.1.2. Let f(x) be a function. If dom(f) ≠ (−∞,∞) then f(x) is not a polynomial.

Example 3.1.3.

Polynomials Not Polynomials

f(x) = x3 − 3x2 + 2x − 5
f(x) = 4x + 7x2 − 2 − 10x3 + x7 f(x) = 1

x
f(x) = 42 f(x) =

√
x

f(x) = 3x − 10 f(x) = |x|
f(x) = 3x2 − 2
f(x) = 4x + x3

4
f(x) = (x + 1)(x − 3)2

Definition 3.1.4. Suppose f(x) = anx
n + · · · + a1x + a0 is a polynomial function with an ≠ 0.

• The leading term of f is the term anx
n.

• The degree of f is the natural number n.

• The leading coefficient of f is the real number an.

• The constant term of f is the real number a0.

If f(x) = 0 then we say f has no degree.

Example 3.1.5.

• f(x) = 4x5 − 3x2 + 2x − 5:
leading term: 4x5, degree: 5, leading coefficient: 4, constant term: −5.

• g(x) = 12x + x3:
leading term x3, degree 3, leading coefficient: 1, constant term: 0.

• h(x) = 4 − x

5 :

leading term − 1
5x, degree: 1, leading coefficient: − 1

5 , constant term: 4
5 .
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• p(x) = (2x − 1)3(x − 2)(3x + 2):
– leading term (2x)3(x)(x)(3x) = 24x5

– degree: 5
– leading coefficient 24
– constant term: (−1)3(−2)(2) = 4

• q(x) = (3 − 2x)2(1 + x)10(x2 − 4)
– leading term (−2x)2(x)10(x)(x2) = (4x2)(x10)(x2) = 4x14
– degree: 14
– leading coefficient: 4
– constant term: (3)2(1)10(−4) = (9)(1)(−4) = −36

Exercise. Find (i) the leading term, (ii) the degree, (iii) the leading coefficient, and (iv) the con-
stant term of the given polynomial.

f(x) = x4 − 10x2 + 1a) g(x) = 42 − x3b)

h(x) = x2 − 4
2c) p(x) = (x − 1)9(x − 2)(x − 3)(x − 4)d)

Fact 3.1.6. Let f(x) be a polynomial and a ∈ (−∞,∞). The following are equivalent.

(1) a is the constant term of f.

(2) f(0) = a.

(3) (0, a) is the y-intercept of the graph of f.

Remark 3.1.7.

(1) Since the constant term gives us the y-intercept, it is useful for sketching the graph of a poly-
nomial.

(2) Recall that to find the y-intercept of a function f(x), we just have to evaluate f(0). Hence, we
can also find the constant term like this.

Example 3.1.8.

• Suppose f(x) = 2(x + 1)2(2 − x)3. Then f(0) = 2(0 + 1)2(2 − 0)3 = 2(1)2(2)3 = 2(1)(8) = 16, so
the constant term is 16 and the y-intercept is (0, 16).

• Suppose g(x) is a polynomial with y-intercept (0,−11). Then the constant term of f is −11
and g(0) = −11.

• Suppose h(x) is a polynomial such that h(0) =
√
2. Then the constant term of g is

√
2 and the

y-intercept is (0,
√
2).
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Definition 3.1.9 (End behavior). The end behavior of a function f(x) is a description of what is hap-
pening to the function values f(x) as the x-values go towards −∞ and∞.

Example 3.1.10.

• The end behavior of f(x) = x2 can be described as follows:

if x → ∞ then f(x) → ∞.– if x → −∞ then f(x) → ∞.–

• The end behavior of g(x) = 2x − 1 can be described by:

if x → ∞ then g(x) → ∞.– if x → −∞ then g(x) → −∞.–

• The end behavior of h(x) = 42 can be described by:

if x → ∞ then h(x) → 42.– if x → −∞ then h(x) → −42.–

• The end behavior of j(x) = 1
x
can be described by:

if x → ∞ then j(x) → 0.– if x → −∞ then j(x) → 0.–

Fact 3.1.11. The end behavior of a polynomial f(x) is determined by it’s leading coefficient and
degree.

Odd degree Even degree

Positive leading coefficient

x → ∞ =⇒ f(x) → ∞
x → −∞ =⇒ f(x) → −∞

x → ∞ =⇒ f(x) → ∞
x → −∞ =⇒ f(x) → ∞

Negative leading coefficient

x → ∞ =⇒ f(x) → −∞
x → −∞ =⇒ f(x) → ∞

x → ∞ =⇒ f(x) → −∞
x → −∞ =⇒ f(x) → −∞

Remark 3.1.12.

(1) It is enough to know the leading term of a polynomial to determine its end behavior.

(2) Knowing the end behavior is essential to graph the sketch of a function.
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Example 3.1.13.

• The end behavior of f(x) = 4x10 − x9 + 10 can be described by:

if x → ∞ then f(x) → ∞.– if x → −∞ then f(x) → ∞.–

• The end behavior of g(x) = −2x5 − 1 can be described by:

if x → ∞ then g(x) → −∞.– if x → −∞ then g(x) → ∞.–

• The end behavior of h(x) = (x − 5)2(2 − x)3(x + 1)19 can be described by:

if x → ∞ then h(x) → −∞.– if x → −∞ then h(x) → −∞.–

Leading term: (x)2(−x)3(x)19 = (x2)(−x3)(x19) = −x24, so the degree is even and the leading
coefficient is negative.

Exercise. Suppose f(x) = (x − 1)3(x + 2). Find/evaluate

leading terma) degreeb) leading coefficientc)
constant termd) y-intercepte) end behaviorf)

Remark 3.1.14.

(1) The end behavior tells us what the graph of a function does at the “ends.” However, except
for the y-intercept we do not really know what the graph does in between. This is where we
will use x-intercepts of the functions. For this we need to know how a polynomial behaves
at it’s x-intercepts.

(2) Recall that (c, 0) is an x-intercept of f(x) if and only if f(c) = 0 if and only if x = c is a zero of
f(x).

Fact 3.1.15. Let a, b ∈ (−∞,∞). If ab = 0 then a = 0 or b = 0.

Remark 3.1.16. You can only split factors like this if they equal 0. It is not the case that if ab = c

then a = c or b = c. For example, suppose ab = 6 then a = 2 ≠ 6 and b = 3 ≠ 6.

Example 3.1.17. Let f(x) = (x + 2)(x − 3). Then zeros of f are found by solving f(x) = 0:

(x + 2)(x − 3) = 0 =⇒ (x + 2) = 0 or (x − 3) = 0
=⇒ x = −2 or x = 3

However, we cannot solve f(x) = 6 in this way:

(x + 2)(x − 3) = 6 ≠⇒ x + 2 = 6 or x − 3 = 6
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Definition 3.1.18. Suppose f(x) is a polynomial function and c ∈ (−∞,∞) is a zero of f. The
multiplicity of c is the number of times (x − c) is a factor of f(x).

Example 3.1.19.

• Let f(x) = (x + 2)(x − 1)3. The zeros and their multiplicity are found using the factors (x + 2)
and (x − 1). Namely, x = −2 is a zero of multiplicity 1 and x = 1 is a zero of multiplicity 3.

• Let g(x) = (2x − 4)9(x + 3)3. Then x = 2 is a zero of multiplicity 9 and x = −3 is a zero of
multiplicity 3.

• Let h(x) = x2 − 2x − 8. Factoring gives h(x) = (x − 4)(x + 2), so the zeros are x = 4 and x = −2
both with multiplicity 1.

• Let p(x) = x3 + 3x2 − 9x − 27. Not always easy to find the zeros.

Exercise. Tind zeros and their multiplicity of the following polynomials

f(x) = (x + 1)2(x − 4)3a) g(x) = (x − 3)(2x − 9)4b) p(x) = x2 − 9c)

Fact 3.1.20. Suppose f(x) is a polynomial function and x = c is a zero of multiplicitym.

• Ifm is even, the graph of y = f(x) touches and rebounds from the x-axis at (c, 0).

• Ifm is odd, the graph of y = f(x) crosses through the x-axis at (c, 0).

• Ifm is large then the angle f(x) approaches (c, 0) at is small.

Example 3.1.21.

• Let f(x) = −3(2x−1)(x+1)2. Wewill sketch y = f(x). The leading term of f(x) is (−3)(2x)(x)2 =

−6x3. Thus, f has odd degree and a negative leading coefficient. Hence, end behavior is
described by:

If x → −∞ then f(x) → ∞.– If x → ∞ then f(x) → −∞.–

To find the x-intercepts, we will find the zeros: f(x) = 0

2x − 1 = 0 ⇐⇒ 2x = 1 ⇐⇒ x = 1
2

with multiplicity 1
• x + 1 = 0 ⇐⇒ x = −1

with multiplicity 2
•

Hence, x-intercepts are (12 , 0) and (−1, 0).
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x

y

The constant term is f(0) = −3(2 · 0 − 1)(0 + 1)2 = −3(−1)(1)2 = 3(1) = 3, so the y-intercept is
(0, 3).

• Suppose g(x) = (x − 1)4(x + 2)3(2x − 14).
– Leading term: (x)4(x)3(2x) = 2x8.
– Degree: 8 (even)
– Leading coefficient: 2 (positive)
– Constant term: f(0) = (−1)4 · 23 · −14 = 1 · 8 · (−14) = −112.
– End behavior: if x → −∞ then f(x) → ∞, and if x → ∞ then f(x) → ∞.
– Zeros: x = 1 with multiplicty 4, x = −2 with multiplicity 3, x = 7 with multiplicity 1
– x-intercepts: (1, 0), (−2, 0), (7, 0)
– y-intercept: (−112, 0)

−2 1 7

−112

x

y

Exercise. Sketch the graph of f(x) = −(x + 1)5(x − 2)2(x − 5).
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3.2 Factor Theorem and Remainder Theorem

Remark 3.2.1. Recall, to sketch the graph of a polynomial it is important to be able to find the zeros.
For this purpose we want to factor polynomials.

Example 3.2.2.

• Let f(x) = x5 − 36x3. The leading term of f(x) is x5, so the end behavior is

if x → −∞, then f(x) → −∞– if x → ∞, then f(x) → ∞–

The constant term is 0, so the y-intercept is (0, 0). To find the x-intercepts we need to factor:

x5 − 36x3 = x3(x2 − 36) = x3(x − 6)(x + 6).

Thus, the zeros are 0 (multiplicity 3), −6 (multiplicity 1), and 6 (multiplicity 1). We can now
sketch the graph of f:

−10−8 −6 −4 −2 2 4 6 8 10
x

y

• Let g(x) = 2x2 − 4x − 6.
– The leading term is 2x2, so the end behavior is .
– The constant term is −6, so the y-intercept is (0,−6).
– Factoring: 2x2 − 4x− 6 = 2(x2 − 2x− 3) = 2(x− 3)(x+ 1) gives the zeros are 3 and −1 both
with multiplicity 1.

−4 −2 2 4

−6

x

y
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• Let h(x) = −3x4 − x3 + 4x2

– The leading term is −3x4, so the end behavior is .
– The constant term is 0, so the y-intercept is (0, 0).
– Factoring: −3x4 − x3 + 4x2 = (−x2)(3x2 + x − 4)

= −(x)2(3x2 + 4x − 3x − 4)
= −(x)2

(
(x)(3x + 4) − (3x + 4))

= −(x)2(x − 1)(3x + 4)
so the zeros are 0 (multiplicity 3), 1 (multiplicity 1), − 4

3 (multiplicity 1).

−3 −2 −1 1 2 3
x

y

Exercise. Factor the following polynomials.

f(x) = x2 − 2x − 15a) g(x) = 3x2 − 27b) h(x) = 2x2 + x − 3c) p(x) = x3 + 32 + 9xd)

Fact 3.2.3. Suppose f(x) is a (nonzero) polynomial and c ∈ (−∞,∞). The following are equivalent.

(1) (x − c) is a factor of f(x).

(2) c is a zero of f.

(3) f(c) = 0.

(4) x = c is a solution to the equation f(x) = 0.

(5) (c, 0) is an x-intercept of the graph y = f(x).

Example 3.2.4. Let f(x) be a polynomial.

• If (x − 2) is a factor of f(x) then f(2) = 0.

• If (−1, 0) is an x-intercept of f then (x + 1) is a factor f.

• If f(5) ≠ 0 then (x − 5) is not a factor of f(x).

• If (3, 1) is on the graph of f then (x − 3) is not a factor of f(x).
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Remark 3.2.5.

(1) Recall, we can divide numbers using long division:

7 3141
448

28
34
28
61
56
5

Thus, 3141 = 7(448) + 5.

(2) Similarly, we can divide polynomials:

5x2 + 13x + 39
x − 3) 5x3 − 2x2 + 1

− 5x3 + 15x2

13x2
− 13x2 + 39x

39x + 1
− 39x + 117

118

Thus, 5x3 − 2x2 + 1 = (x − 3)(x2 − 12x + 36) + 118.

(3) Polynomial long division allows us to factor polynomials if we know one of the factors/zeros.

Example 3.2.6. Let f(x) = 3x3 + 3x2 − 30x + 24 be a polynomial. Observe that f(−4) = 0, so −4 is a
zero, and hence (x + 4) is factor. Then

3x2 − 9x + 6
x + 4) 3x3 + 3x2 − 30x + 24

− 3x3 − 12x2

− 9x2 − 30x
9x2 + 36x

6x + 24
− 6x − 24

0
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Thus, f(x) = 3x3 + 3x2 − 30x + 24 = (x + 4)(3x2 − 9x + 6) + 0
= 3(x + 4)(x2 − 3x + 2)
= 3(x + 4)(x − 2)(x − 1)

Exercise. Use polynomial long division to perform the indicated division.

(4x2 + 3x − 1) ÷ (x − 3)a) (2x3 − x + 1) ÷ (x2 + x + 1)b)

Exercise. Given the polynomial expression and one of its zeros, find the remaining zeros and factor
completely.

x3−24x2+192x−512, x = 8.a) x4 − 6x3 − 16x2 + 150x − 225, x = 3 (multiplicity 2).b)
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4.1 Introduction to Rational Functions

Definition 4.1.1. A rational function is a function of the form

f(x) = e(x)
d(x)

where e and d are polynomials.

Example 4.1.2.

• f(x) = 1
x
is a rational function.

• g(x) = x2 − 9
x − 3 is a rational function.

• h(x) = x3 + 42 is a rational function; every polynomial is a rational function.

• A(x) = |x| is not a rational function.

• r(x) = 1√
x + 2

is not a rational function.

• p(x) = (x − 2)(x + 4)
(x − 4)(x − 2)(x + 1) is a rational function.

Remark 4.1.3.

(1) Rational numbers are numbers of the form a
b where a, b are integers, so rational functions are

obtained by applying this idea to polynomials.

(2) Our aim is to be able to sketch rational functions.

Exercise. Which of the following functions are rational functions?

f(x) = 42a) g(x) = |4x+1|b) h(x) = x4

x3 + 1c) j(x) =

1 − x if x ⩽ 0
2x + 4 if x > 0

d)

Definition 4.1.4. We say a rational function f(x) = e(x)
d(x) is in lowest terms (simplest terms) if e(x) and

d(x) have no common factors.

Example 4.1.5.

• f(x) = (x + 1)(x + 2)
(x + 3)(x − 4) is in lowest terms.

• g(x) = (x + 1)(x + 2)
(x + 1)(x − 4) is not in lowest terms.
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• h(x) = x2 − 9
x + 3 is not in lowest terms.

• i(x) = 2(x + 1)
4(x − 1) is not in lowest terms.

• j(x) = x3 − 2x2 − 13x − 10
x + 2 is not in lowest terms (use polynomial long division).

• k(x) = x3 − 3x2 − 10x − 24
2x3 + 2x2 − 50x − 50 – not always easy to decide.

Exercise. Reduce f(x) = x2 − 16
2x + 8 to its lowest terms.

Remark 4.1.6. Since rational functions can have division in them, their domain is not always ev-
erything.

Example 4.1.7.

• Let f(x) = 2x − 1
x + 1 .

Need x + 1 ≠ 0 =⇒ x ≠ −1 =⇒ dom(f) = (−∞,−1) ∪ (−1,∞).

• Let g(x) = 2 − 3
x + 1 .

Need x + 1 ≠ 0 =⇒ x ≠ −1 =⇒ dom(g) = (−∞,−1) ∪ (−1,∞).

• Let h(x) = 2x2 − 1
x2 − 1 − 3x − 2

x2 − 1 .

Need x2 − 1 ≠ 0 =⇒ (x − 1)(x + 1) ≠ 0 =⇒ x ≠ ±1
=⇒ dom(h) = (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

• Let r(x) =

(2x − 1
x2 − 4

)
(
x + 1
x2 − 4

)
Need x2 − 4 ≠ 0 =⇒ (x − 2)(x + 2) ≠ 0 =⇒ x ≠ ±2

Need
(
x + 1
x2 − 4

)
≠ 0 =⇒ x + 1 ≠ 0 =⇒ x ≠ −1.

Hence, dom(h) = (−∞,−2) ∪ (−2,−1) ∪ (−1, 2) ∪ (2,∞).

Example 4.1.8. Let’s rewrite the functions from the last example in the form e(x)
d(x) for polynomials

e(x) and d(x) in lowest terms (no common factors).

• f(x) = 2x − 1
x + 1 is already in this form and in lowest terms.
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• g(x) = 2 − 3
x + 1 =

(x + 1)2
x + 1 − 3

x + 1 =
(x + 1)2 − 3

x + 1 =
2x + 2 − 3

x + 1 =
2x − 1
x + 1 .

• h(x) = 2x2 − 1
x2 − 1 − 3x − 2

x2 − 1 =
2x2 − 1 − (3x − 2)

x2 − 1 =
2x2 − 1 − 3x + 2

x2 − 1 =
2x2 − 3x + 1

x2 − 1
=

2x2 − 2x − x + 1)
(x + 1)(x − 1)

=
2x(x − 1) − (x − 1)

(x + 1)(x − 1)
=

(2x − 1)(x − 1)
(x + 1)(x − 1)

=
2x − 1
x + 1 .

• r(x) =

(2x − 1
x2 − 4

)
(
x + 1
x2 − 4

) =
2x − 1
x2 − 4 · x

2 − 4
x + 1 =

(2x − 1)(x2 − 4)
(x2 − 4)(x + 1) =

2x − 1
x + 1 .

So they all appear to look the same when simplified, however only f(x) = g(x) (the others have
different domains).
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4.2 Graphs of Rational Functions

Remark 4.2.1. Consider the graph of f(x) = 1
x .

−4 −2 2 4

−4

−2

2

4

x

y

We know dom(f) = (−∞, 0) ∪ (0,∞) and at x = 0 something peculiar happens to the graph of f(x).

Definition 4.2.2. Let f be a function.

(1) A vertical asymptote of the graph y = f(x) is a vertical line x = c such that

if x → c− then |f(x)| → ∞– if x → c+ then |f(x)| → ∞–

(2) A horizontal asymptote of the graph y = f(x) is a horizontal line y = c such that

if x → −∞ then f(x) → c– if x → ∞ then f(x) → c.–

Remark 4.2.3. Observe that having a horizontal asymptote is a special instance of describing the
end behavior of a function.

Example 4.2.4.

• f(x) = 1
x
+ 2 has the graph of y = 1

x shifted up by 2:

−4 −2 2 4
−2

2

4

6

x

y
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• g(x) = 1
x − 3 has the graph of y = 1

x shifted right by 3:

−2 2 4 6 8

−4

−2

2

4

x

y

• h(x) = 1 + 2x
x

Observe, 1 + 2x
x

=
1
x
+ 2x

x
=

1
x
+ 2.

This is f(x) from part a).

• i(x) = 2x − 5
x − 3

Observe,
2

x − 3) 2x − 5
− 2x + 6

1

so 2x − 5 = 2(x − 3) + 1 =⇒ 2x − 5
x − 3 =

1
x − 3 + 2

Thus, the graph y = h(x) is obtained by shifting the graph y = 1
x up 2 and right 3:

−2 2 4 6 8
−2

2

4

6

x

y
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Exercise. Sketch f(x) = 1
x + 2 − 1 and identify the asymptotes.

Remark 4.2.5. If f(x) is obtained by transforming 1
x it is easy to find the asymptotes. However, not

every rational function can be obtained this way.

Example 4.2.6. Let f(x) = x + 1
x2 − x − 2 . Simplify: x + 1

x2 − x − 2 =
1(x + 1)

(x − 2)(x + 1) =
1

x − 2 .

Thus, the graph of f(x) is obtained by transforming 1
x right by 2. However note that dom(f) =

(−∞,−1) ∪ (−1, 2) ∪ (2,∞), so y = f(x) has a hole on the vertical line x = 2:

−2 2 4 6

−4

−2

2

4

x

y

We say the graph of f(x) has a hole at (2,−1).

Definition 4.2.7. Let f(x) be a function. A point (a, b) is a hole of the graph y = f(x) if

(1) a ∉ dom(f)

(2) The graph y = f(x) goes through (a, b).

Remark 4.2.8. Determining the holes and vertical asymptotes are crucial to sketch a graph. They
can be found by factoring the enumerator and denominator of a rational function!

Fact 4.2.9. Suppose f(x) = e(x)
d(x) is a rational function and c is a zero of multiplicity m of d(x).

(Equivalently, (x − c)m is a factor of d(x))
If c is a zero of e(x), let n be its multiplicity. If c is a not a zero of e(x), let n = 0.
(Equivalently, (x − c)n is a factor of e(x) or (x − c)0 = 1 is a factor of e(x))

(1) Ifm > n, then x = c is a vertical asymptote.
• Ifm − n is odd, then f(x) flips signs over the vertical asymptote. E.g., or

• Ifm−n is even, then f(x) has the same sign on both sides of the vertical asymptote. E.g.,
or
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(2) Ifm ⩽ n then the graph has a hole on the line x = c. In particular, the hole is (c, f′(c))where
f′(x) is obtained by removing the common factors from f(x).

Example 4.2.10.

• f(x) = 2x
x2 − 9 =

2x
(x − 3)(x + 3) .

– (x − 3) is only a factor of the denominator, so x = 3 is a vertical asymptote.
– (x + 3) is only a factor of the denominator, so x = −3 is a vertical asymptote.

• g(x) = x2 − x − 6
x2 − 9 =

(x + 2)(x − 3)
(x − 3)(x + 3)

– (x − 3) is a common factor, so there is a hole on the line x = 3. Cancelling factors gives
denominator f′(x) = (x+2)

(x+3) , so the hole is (3, 56 ).
– (x + 3) is only a factor of the denominator, so x = −3 is a vertical asymptote.

• h(x) = x2 − x − 6
x2 + 9 =

(x − 3)(x + 2)
x2 + 9 .

– Note that d(x) = x2 + 9 has no zeros, and hence no factors. Thus, y = f(x) has no holes
and no vertical asymptotes.

• r(x) = x2 − x − 6
x2 + 4x + 4 =

x2 − x − 6
x2 + 4x + 4 =

(x + 2)(x − 3)
(x + 2)(x + 2) =

(x + 2)(x − 3)
(x + 2)2

– (x − 2)2 is only a factor of the denominator, so x = 2 is a vertical asymptote.

• p(x) = (x − 4)(x − 3)(x − 2)(x + 2)
(x − 5)(x − 3)(x + 2)(x + 3) .

– (x − 5) is only a factor of the denominator, so x = 5 is a vertical asymptote.
– (x − 3) is a common factor and f′(3) = (3−4)(3−2)

(3−5)(3+3) =
1
12 , so there is a hole at (3, 1

12 )

– (x + 2) is a common factor and f′(−2) = (−2−4)(−2−2)
(−2−5)(−2+3) = − 24

7 , so there is a hole at (−2,− 24
7 ).

Exercise. Find the holes and vertical asymptotes of f(x) = (x − 4)(x − 2)(x + 1)
(x − 2)(x − 1)(x + 3) .

Remark 4.2.11. We can now find vertical asymptotes and holes of factored rational functions. We
only need one more ingredient to make rough sketches of rational functions, the ability to find the
end behavior, i.e., determining whether/where the function has a horizontal asymptote.

Fact 4.2.12. Suppose f(x) = e(x)
d(x) is a rational function, where e(x) and d(x) have the leading terms

axn and bxm, respectively.

(1) The end behavior of f(x) is the same as the end behavior of y =
axn

bxm
(= a

bx
n−m).

(2) If n = m, then y = a
b is the horizontal asymptote of the graph of y = f(x).

(3) If n < m, then y = 0 is the horizontal asymptote of the graph of y = f(x).
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(4) Ifm > n, then the graph of f has no horizontal asymptotes.

Example 4.2.13.

• f(x) = 5x
x2 + 1

– f(x) has the same end behavior as y = 5x
x2 = 5

x .
– The horizontal asymptote is y = 0.

• g(x) = x2 − 4
x + 1

– f(x) has the same end behavior as y = x2
x = x

– The end behavior of f(x) is .

– There is no horizontal asymptote.

• h(x) = 6x3 − 3x + 1
5 − 2x3

– f(x) has the same end behavior as y = 6x3
−2x3 = −3

– The horizontal asymptote is y = −3.

We are now ready to sketch rational functions.

Example 4.2.14.

• f(x) = 3x2 − 5x − 2
x2 − 9 =

3x2 − 6x + 1x − 2
(x − 3)(x + 3) =

3x(x − 2) + 1(x − 2)
(x − 3)(x + 3) =

(3x + 1)(x − 2)
(x − 3)(x + 3) .

– Vertical asymptote at x = −3 (flips signs)
– Vertical asymptote at x = 3 (flips signs)

– 3x2
x2

= 3 =⇒ y = 3 is the horizontal asymptote.

– x-intercepts are (−1
3 , 0) and (2, 0) (both cross x-axis)

– y-intercept is (0, 29 )

−6 −4 −2 2 4 6

−10

10

x

y
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• g(x) = 9(x − 3)2(x + 1)
(x − 2)2(x + 1)

– Vertical asymptote at x = 2 (same sign)
– Hole at (−1,−4)

– 9x2
x3

=
9
x

=⇒ y = 0 is the horizontal asymptote
– x-intercept is (3, 0) (crosses x-axis)
– y-intercept is (0,−27

4 )

−10 −8 −6 −4 −2 2 4 6 8 10

−10

10

x

y

• h(x) = 8(x − 3)2(x + 1)5
9(x + 2)(x − 2)(x − 1)2

– Vertical asymptote at x = −2 (flips signs)
– Vertical asymptote at x = 2 (flips signs)
– Vertical asymptote at x = 1 (same sign)

– x7

x4
= x3 =⇒ end behavior is

– x-intercept at (3, 0) (bounces off x-axis)
– x-intercept at (−1, 0) (crosses through x-axis)
– y-intercept at (0,−2)

−4 −2 2 4

−40

−20

20

40

x

y

Exercise. Sketch the graph of f(x) = 2(x − 2)2(x + 1)
(x − 1)2(x + 1) .
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4.3 Rational Inequalities and Applications

Definition 4.3.1. Suppose x, y are variables. We say

(1) y varies directly with x if there is some k ∈ (−∞,∞) such that y = kx.

(2) y varies inversely with x if there is some k ∈ (−∞,∞) such that y = k
x .

The value k is called the constant of proportionality.

Example 4.3.2.

• y = 2x =⇒ y varies directly with x and the constant of proportionality k = 2.

• P = 1
5t =⇒ P varies directly with t.

• m = 1
s =⇒ m varies inversely with s.

• d = 1
2t

2 =⇒ d varies directly with t2.

• xy = 4 =⇒ x varies inversely with y.

• A = 42ks =⇒ A varies directly with k and s.

• Let c ∈ (−∞,∞) and suppose x = 2c. Then x does not vary directly with c.

Example 4.3.3.

• “At fixed pressure, the temperature T of an ideal gas is directly proportional to its volume V .”
=⇒ T = kV .

• “The frequency of a wave f is inversely proportional to the wavelength of the wave λ”.

=⇒ f =
k

λ
.

• “The force F exerted on a spring is directly proportional the extension x of the spring.”
=⇒ F = kx.

• “The volume V of a cone varies with the height h and the square of the radius r of the base.”
=⇒ V = khr2

• “The current I directly proportional to the voltage V and inversely proportional to the resis-
tance R.”
=⇒ I =

kV

R
.

• “The foo f varies directly with the square root of the bar b and inversely with the absolute
value of the foobar F”.

=⇒ f =
k
√
b

|F|
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Example 4.3.4.

• Suppose that y varies directly with x. If x = 11 then y = 42.
We know y = kx and we want to find k. Plug in x = 11 and y = 42.

42 = 11k =⇒ k =
42
11 .

• Suppose z is directly proportional to x and inversely proportional to z. If y = 4 when x = 2
and z = 5.
We have y = kx

z , so plugging in y = 4, x = 2, and z = 5 we get

4 =
2k
5 =⇒ k =

4 · 5
2 =

20
2 = 10.

Example 4.3.5. The velocity v of a monkey rocket varies directly to the time t after the launch. If
after 2 seconds, the velocity of the rocket is 64 feet per second, what is the velocity after 5 seconds?

First, we set up the mathematical notation using variation. We get v = kt. Now plugging in t = 2
and v = 64we get

64 = 2k =⇒ k = 32

Thus, v = 32t. Then solving v for t = 5 we have v = 32 · 5 = 160 feet per second.

Exercise. Use the given information to find the (i) the constant of proportionality, and (ii) the
wanted value y.

y varies directly with x.
If x = 2, then y = 10.
Wanted: y when x = 5.

a) y is inversely proportional to x.
If x = 5, then y = 10.
Wanted: y when x = 25.

b)

y varies jointly with x and z

If x = 4 and z = 2, then y = 16.
Wanted: y when x = 3 and z = 3.

c) y is directly proportional to the cube of x.
If x = 2, then y = 4.
Wanted: y when x = 3.

d)

Remark 4.3.6. To simplify 4
5 + 3

8 we need to find a common denominator. This can easily be done:

4
5 + 3

8 =
4(8)
5(8) +

3(5)
8(5) =

32
40 + 15

40 =
47
80

Similarly, we find common denominators between rational expressions:

2x + 1
x + 1 + 3

4x + 2 =
(2x + 1)(4x + 2)
(x + 1)(4x + 2) + 3(x + 1)

(x + 1)(4x + 2) =
6x2 + 8x + 2
4x2 + 6x + 2 + 3x + 3

4x2 + 6x + 2 =
6x2 + 11x + 5
4x2 + 6x + 2

Exercise. Simplify the following.
1

x + 3 + 2
x − 1a) 2

x − 2 − 1
x

b) 1
x
+ 1

x + 2 + 1
x − 2c)
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Example 4.3.7.

• x

5x + 4 = 3 =⇒ x = 3(5x + 4)

=⇒ x = 15x + 12
=⇒ −14x = 12

=⇒ x = −12
14 = −6

7

• 1
x + 2 + 3

x
= −2 =⇒ x

x2 + 2x + 3x + 6
x2 + 2x = −2

=⇒ 4x + 6
x2 + 2x = −2

=⇒ 4x + 6 = −2x2 − 4x
=⇒ 2x2 + 8x + 6 = 0
=⇒ 2x2 + 6x + 2x + 3 = 0
=⇒ 2x(x + 3) + 2(x + 3) = 0
=⇒ (2x + 2)(x + 3) = 0

=⇒ x = −1 or x = −3

Remark 4.3.8. When solving rational equations you might cancel out a factor or multiply by a
denominator. This might introduce “solutions” that do not solve the original equation.

Example 4.3.9.

• x3 − 2x + 1
x − 1 =

x − 2
2 =⇒ 2(x3 − 2x + 1) = (x − 2)(x − 1)

=⇒ 2x3 − 4x + 2 = x2 − x − 2x + 2
=⇒ 2x3 − x2 − 3x = 0
=⇒ x(2x2 − x − 3) = 0
=⇒ x(2x + 1)(x − 1) = 0

=⇒ x = 0 or x = − 1
2 or x = 1

However, plugging in x = 1 gives division by 0 =⇒ x = 1 is not a solution.

• 1
x + 3 + 1

x − 3 =
x2 − 3
x2 − 9 =⇒ x − 3 + x + 3

x2 − 9 =
x2 − 3
x2 − 9

=⇒ 2x
x2 − 9 =

x2 − 3
x2 − 9

=⇒ 2x = x2 − 3
=⇒ −x2 + 2x + 3 = 0
=⇒ x2 − 2x − 3 = 0
=⇒ (x + 1)(x − 3) = 0
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• 19 + x

|x + 3| = 3 =⇒ 19 + x = 3|x + 3|

=⇒ 19 + x = 3(x + 3) or 19 + x = −3(x + 3)
=⇒ 19 + x = 3x + 9 or 19 + x = −3x − 9
=⇒ −2x = −10 or 4x = −28
=⇒ x = 5 or x = −7

Exercise. Solve the following equations.

x2 − x

2 = 1a) 1
x
=

5
2b) x + 3

x3 + x + 3 = 0c)
3

2x2 + 5x = 1d) 1
x + 8 − 1

3x + 2 = 0e) 4x + 8
x − 2 = x + 2f)

Example 4.3.10. The population of super intelligent monkeys on Mars is modeled by the function

P(t) = 500t
2t + 100 ,

where t = 0 represents the year 1885.

• How many monkeys are there in 1935?

1935 − 1885 = 50 so we need to evaluate p(50) = 500(50)
2(50) + 100 =

25000
200 = 125 monkeys

• When are there 200 super intelligent monkeys on Mars?
We have to solve the equation P(t) = 200.

500t
2t + 100 = 200 =⇒ 500t = 200(2t + 100)

=⇒ 500t = 400t + 20000
=⇒ 100t = 20000
=⇒ t = 200

t = 200 represents the year 1885 + 200 = 2285, so there are 200 monkeys in 2285.

• Does the population reach a maximum?
We can sketch y = P(t):

– Vertical asymptote at t = −50
– End behavior same as y = 500t

2t = 250 =⇒ horizontal asymptote at y = 250.
– x-intercept (0, 0), also the y-intercept.
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−50

250
x

y

The population does never go above 250.
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5.1 Function Composition

Exercise. Let f(x) and g(x) be functions with x ∈ dom(f) ∩ dom(g). Unfold the definitions.

(f + g)(x) =a) (f − g)(x) =b) (fg)(x) =c)
(
f
g

)
(x) =d)

Definition 5.1.1. Suppose f and g are functions. The composite of gwith f, denoted g ◦ f is defined
by the formula

(g ◦ f)(x) = g(f(x)),

provided x ∈ dom(f) and f(x) ∈ dom(g).

Remark 5.1.2. We read g ◦ f as “g composed with f,” or “g of f.”

Example 5.1.3.

• Let f(x) = x2 and g(x) = x + 1.
– (g ◦ f)(2) = g(f(2)) = g(22) = g(4) = 4 + 1 = 5
– (f ◦ g)(2) = f(g(2)) = f(2 + 1) = f(3) = 32 = 9
– (f ◦ g ◦ f)(1) = f(g(f(1))) = f(g(12)) = f(g(1)) = f(1 + 1) = f(2) = 22 = 4
– (g ◦ f)(x) = g(f(x)) = g(x2) = x2 + 1
– dom(g ◦ f) = (−∞,∞)

– (f ◦ g)(x) = f(g(x)) = f(x + 1) = (x + 1)2 = x2 + 2x + 1
– dom(f ◦ g) = (−∞,∞)

• Let f(x) = |x| and g(x) =
√
x.

– (f ◦ g)(9) = f(g(9)) = f(
√
9) = f(3) = |3| = 3

– (f ◦ g)(−9) = f(g(−9)) = f(
√
−9) = ? = undefined because −9 ∉ dom(g)

– (g ◦ f)(−5) = g(f(−5)) = g(| − 5|) = g(5) =
√
5

– (f ◦ g)(x) = f(g(x)) = f(
√
x) = |

√
x| =

√
x

– dom(f ◦ g) = [0,∞)

– (g ◦ f)(x) = g(f(x)) = f(|x|) =
√
|x|

– dom(g ◦ f) = (−∞,∞) because |x| ⩾ 0 is true for all x.

• Let f(x) = 1
x2

and g(x) = 2
x + 3 .

– (g ◦ f)(3) = g(f(3)) = g
(
1
32

)
= g

( 1
9
)
= 2

1
9+3

= 2
1
9+

27
9
= 2

28
9
= 2 · 9

28 = 18
28 = 9

14

– (g ◦ f)(x) = g(f(x)) = g
(
1
x2

)
= 2

1
x2 +3

= 2
1
x2 +

3x2
x2

= 2
1+3x2x

2 = 2 · x2
1+3x2 = 2x2

1+3x2

– dom(g ◦ f) = (−∞, 0) ∪ (0,∞)
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Remark 5.1.4. To find the domain unfold the functions and find the domain as usual. Do not
simplify and then find the domain!

Exercise. Let f(x) = |x| and g(x) = −x. Evaluate the following expressions.

f(−2)a) g(−2)b) (g ◦ f)(−2)c) (f ◦ g)(−2)d)

(f + g)(−2)e) (g − f)(−2)f) (gf)(−2)g)
(
f

g

)
(−2)h)

g(1)i) (g ◦ g)(1)j) (g ◦ g ◦ g)(1)k) (f ◦ g ◦ g ◦ g)(1)l)

Remark 5.1.5. We now know how to compute the composition of two functions. It can be useful
go the other way; to write a function as the composition of simpler functions.

Example 5.1.6.

• f(x) = |3x|
– Want f1(x), f2(x) such that f(x) = (f2 ◦ f1)(x)
– f1(x) = 3x
– f2(x) = |x|
– (f2 ◦ f1)(x) = f2(f1(x)) = f2(3x) = |3x| = f(x)

• g(x) = 2
x2 + 1

– g1(x) = x2

– g2(x) = x + 1
– g3(x) =

2
x

– (g3 ◦ g2 ◦ g1)(x) = g3(g2(g1(x))) = g3(g2(x2)) = g3(x2 + 1) = 2
x2 + 1 = g(x)

• h(x) =
√
x + 1

√
x − 1

– h1(x) =
√
x

– h2(x) =
x + 1
x − 1

– (h2 ◦ h1)(x) = h2(h1(x)) = h2(
√
x) =

√
x + 1

√
x − 1

= h(x)

Exercise. Write the given function as a composition of two or more (non-identity) functions.

f(x) = 2x + 3a) g(x) =
√
x2 − 4b) h(x) = |x|2 + |x|c) p(x) = 1 − |x + 4|

|x + 4| + 2d)

Example 5.1.7. Let f(x) be a function and i(x) = x the identity function.

(i ◦ f)(x) = i(f(x)) = f(x).• (f ◦ i)(x) = f(i(x)) = f(x).•

Compare this to multiplying a number by 1.
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5.2 Inverse functions

Example 5.2.1. Let f(x) = 3x + 4. Recall, we can describe functions in terms of “recipes.” That is, f
performs the following steps in order.

Multiply by 31. Add 42.

We can define a new function by performing the inverses of the operations in reverse order, i.e.,
the steps

Subtract 41. Divide by 32.

This gives the function g(x) = x − 4
3 .

You might expect that these functions are each others “inverse.” Indeed, observe the following.

• (g ◦ f)(2) = g(f(2)) = g(3(2) + 4) = g(10) = 10 − 4
3 = 2

• (g ◦ f)(−3) = g(f(−3)) = g(3(−3) + 4) = g(−5) = −5 − 4
3 − 3

• (f ◦ g)(4) = f(g(4)) = f

(4 − 4
3

)
= f(0) = 3(0) + 4 = 4

• (f ◦ g)(x) = f(g(x)) = 3g(x) + 4 = 3
(
x − 4
3

)
+ 4 =

3(x − 4)
3 + 4 = x − 4 + 4 = x

• (g ◦ f)(x) = g(f(x)) = f(x) − 4
3 =

(3x + 4) − 4
3 =

3x
3 = x.

We have (f ◦ g)(x) = x and (g ◦ f)(x) for all x. This means that whatever f does is undone by g and
vice versa, we will call g the inverse of f.

Definition 5.2.2. A function f(x) is called invertible if there exists a function g(x) such that

• (f ◦ g)(x) = x for all x ∈ dom(g).

• (g ◦ f)(x) = x for all x ∈ dom(f)

g(x) is called the inverse of f(x), and we commonly write f−1(x) for g(x).

Example 5.2.3.

• Let f(x) = x + 4 and g(x) = x − 4. Then
– Let x ∈ dom(g) = (−∞,∞). Then (f ◦ g)(x) = f(g(x)) = f(x − 4) = (x − 4) + 4 = x

– Let x ∈ dom(f) = (−∞,∞). Then (g ◦ f)(x) = g(f(x)) = g(x + 4) = (x + 4) − 4 = x.
g is the inverse of f.
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• Let f(x) = x2 and g(x) =
√
x. We want to know if g(x) is the inverse of f(x).

– Let x ∈ dom(g) = [0,∞). Then (f ◦ g)(x) = f(g(x)) = f(
√
x) = (

√
x)2 = x.

– Let x ∈ dom(f) = (−∞,∞). Then (g ◦ f)(x) = g(f(x)) = g(x2) =
√
x2 = |x| ≠ x.

g(x) is not the inverse of f(x).

Exercise. Determine whether f(x) = 4 − 2x and g(x) = 2 − 1
2x are each others inverse.

Fact 5.2.4. Let f(x) be a invertible function, f−1(x) its inverse, and a, b ∈ (−∞,∞). The following
are equivalent

(1) f(a) = b

(2) f−1(b) = a

(3) (a, b) is on the graph y = f(x).

(4) (b, a) is on the graph y = f−1(x).

Example 5.2.5. Suppose f(x) is an invertible function, f−1(x) is its inverse, and c ∈ (−∞,∞).

• (c, 0) is an x-intercept of f ⇐⇒ f(c) = 0 ⇐⇒ f−1(0) = c ⇐⇒ (0, c) is the y-intercept of f−1.

• f(x) cannot have two different x-intercepts. Suppose (c, 0) and (d, 0) are x-intercepts of f(x).
Then (0, c) and (0, d) arey-intercepts of f−1(x). But a function cannot havedifferenty-intercepts,
so c = d.

• f(x) = c cannot have more than one solution for the same reason.

Remark 5.2.6. f(x) = x2 has no inverse because there are two solutions to f(x) = 4.

Definition 5.2.7. A function f is one-to-one if a, b ∈ dom(f) with f(a) = f(a) implies a = b.

Remark 5.2.8. A function f is one-to-one if and only if a ≠ b implies f(a) ≠ f(b).

Example 5.2.9.

• f(x) = x2 is not one-to-one; f(2) = 4 = f(−2) but 2 ≠ −2.

• i(x) = x is one-to-one; i(a) = i(b) implies a = b.

• A(x) = |x| is not one-to-one; A(1) = 1 = A(−1) but 1 ≠ −1.

Fact 5.2.10 (Horizontal line test). Suppose f(x) is a function. The following are equivalent.

(1) f(x) is invertible.

(2) f(x) is one-to-one.

(3) No horizontal line intersects the graph y = f(x) more than once.
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Example 5.2.11. Which of the following graphs correspond to invertible functions?

x

y

x

y

x

y

x

y

Exercise. Which of the following graphs correspond to one-to-one functions?

x

y

x

y

x

y

x

y

Fact 5.2.12. Suppose f(x) is invertible.

(1) The graph of y = f−1(x) is the reflection of the graph of y = f(x) across the line y = x.

(2) ran(f) = dom(f−1)

(3) dom(f) = ran(f−1)

(4) f(a) = b iff f−1(b) = a

(5) (a, b) is on the graph y = f(x) iff (b, a) is on the graph of y = f−1(x)

Example 5.2.13. Let f(x) be a function with the graph below on the left.

−5 5

−5

5

x

y

−5 5

−5

5

x

y

How many solutions are there for f−1(x) = −4? We can sketch y = f−1(x) to answer this question.

Example 5.2.14. Show what happens when we reflect the graph of f(x) = x2 across the line y = x.
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Fact 5.2.15. The inverse of a function is unique (there is only one reflection across the line x = y).

Remark 5.2.16. Steps for finding the inverse of an invertible function.

I. Write y = f(x).

II. Interchange x and y.

III. Solve x = f(y) for y ∈ dom(f).

IV. Write f−1(x) = (the solution for y)

Example 5.2.17.

Let f(x) = 1 − 2x
5 .

I. y =
1 − 2x

5
II. x =

1 − 2y
5

III. x =
1 − 2y

5
5x = 1 − 2y

5x − 1 = −2y
5x − 1
−2 = y

IV. f−1(x) = 5x − 1
−2

• Let g(x) = 1
x

I. y =
1
x

II. x =
1
y

III. x∗ = 1
y

xy = 1

y =
1
x

IV. g−1(x) = 1
x
= g(x).

•

Let h(x) =
√
x + 1 − 4.

I. y =
√
x + 1 − 4

II. x =
√
y + 1 − 4

III. x =
√
y + 1 − 4

x + 4 =
√
y + 1

(x + 4)2 = y + 1
(x + 4)2 − 1 = y

IV. h−1(x) = (x + 4)2 − 1
But dom(h−1) = ran(h) = [−4,∞), so h(x)
is not the inverse of the polynomial p(x) =
(x + 4)2 − 1

• Let p(x) = (x + 4)2 − 1.
I. y = (x + 4)2 − 1
II. x = (y + 4)2 − 1
III. x = (y + 4)2 − 1

x + 1 = (y + 4)2

±
√
x + 1 = y + 4

±
√
x + 1 − 4 = y

Themethod can’t work if the function is not
invertible.

•

Exercise. Find the inverse of the following one-to-one functions.

f(x) = 6x − 2a) g(x) = 1
3x + 7b) h(x) = 1 − 2x

5c) p(x) = 3
4 − x

d)
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5.3 Radical functions

Fact 5.3.1. Let a, b ∈ (−∞,∞) andm,n integers. Then

aman = am+n am

an
= am−n (am)n = am·n a0 = 1

(ab)m = ambm a−n =
1
an

(a
b

)m
=

am

bm
a1 = a

provided the expressions are well defined (e.g., no division by 0 etc.).

Example 5.3.2 (Simplify the expression).

• (45)25
4123 =

4125
4123 = 4125−123 = 42 = 16

• (x2x3)−3 = (x5)−3 = 1
(x5)3

=
1
x15

• 10 = 1 and 01 = 0

• ((−3)2) 12 – the fact does not apply here!

• 2x2y−2

4x−3y =
2
4 · x2

x−3
· y

−2

y
=

1
2 · x2−(−3) · y−2−1 =

1
2 · x5 · y−3 =

1
2x

5 · 1
y3 =

x5

2y3

Exercise. Evaluate and simplify the following expressions.

517 · 51−5 · 51−2a) x−2y3

x4y2b)

Fact 5.3.3. Let n be a positive integer.

• If n is odd then the polynomial f(x) = xn (dom(f) = (−∞,∞)) is invertible.

• If n is even then the function f(x) = xn with dom(f) = [0,∞) is invertible.

Definition 5.3.4. Let n be a positive integer.

• If n is odd and then n
√
x is the inverse of the polynomial f(x) = xn.

• If n is even and then n
√
x is the inverse of the function f(x) = xn with dom(f) = [0,∞).

These are called radical functions.

Example 5.3.5.

1√4 = 4 because 41 = 4• 1√−4 = −4 because (−4)1 = 4•
2√9 = 3 because 32 = 9.• 2√−9 is undefined because −25 ∉ [0,∞).•
3√8 = 2 because 23 = 8• 3√−8 = −2 because (−2)3 = −8•
4√1 = 1 because 14 = 1• 4√−1 is undefined because −1 ∉ [0,∞).•

73



Remark 5.3.6.

(1) 1√x = x for all x ∈ (−∞,∞).

(2) We write √x for 2√x.

(3) Let f(x) = n
√
x.

• If n is odd then dom(f) = (−∞,∞) and ran(f) = (−∞,∞).
• If n is even then dom(f) = [0,∞) and ran(f) = [0,∞).

Example 5.3.7.

• Let f(x) = 4+ 4√3x − 12. Then 3x−12 ⩾ 0 ⇐⇒ 3x ⩾ 12 ⇐⇒ x ⩾ 4. Hence, dom(f) = [4,∞).

• Let g(x) = 4 + 3√3x − 12. Then dom(g) = (−∞,∞).

Fact 5.3.8. Let a, b ∈ (−∞,∞) andm and n be positive integers. Then

n
√
ab = n

√
a · n

√
b• ( n

√
a)m =

n
√
am• n

√
a

b
=

n
√
a

n
√
b

•

If n is odd then n
√
an = a• If n is even then n

√
an = |a|•

provided all expressions are defined.

Example 5.3.9 (Evaluate).
√
8 =

√
4 · 2 =

√
4 ·

√
2 = 2

√
2• ( 4√3)2 = 4√32 = 4√9.•

( 4√−3)2 is undefined• 3√−4 · 3√16 =
3√−64 =

3
√
(−4)3 = −4•

4√−2 · 4√−8 is undefined• 4√x · 4√
x3 = 4√

x4 = |x| = x (assuming x ⩾ 0)•

Definition 5.3.10. Let x ∈ (−∞,∞) andm,n integers with n > 0. We define xm
n = ( n

√
x)m provided

the right hand side is defined.

Fact 5.3.11. If m
n = a then x

m
n = xa.

Example 5.3.12.

•
(25
16

) −1
2
=

(
2
√

25
16

)−1
=

(√
25√
16

)−1
=

(5
4

)−1
=

1
5
4
=

4
5

• 4√78 = 7 8
4 = 72 = 49

•
(
x

4
3
) 3

4
=

( ( 3√x
)4) 3

4
=

(
4
√( 3√x

)4)3
=

�� 3√x
��3 = ��� ( 3√x

)3��� = |x|

•
(
x

4
3
) 3

4
≠ x

4
3 ·

3
4 = x

12
12 = x
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Exercise. Evaluate and simplify the following expressions.

4 3
2a)

( 9
16

) 1
2

b)
(16
9

)− 1
2

c)( 8
27

) 1
3

d) 16√332e) 7√221f)

Example 5.3.13.

x
3
2 = 64 =⇒

(
2√x

)3
= 64

=⇒ 3
√(

2√x
)3

=
3√64

=⇒ 2√x = 4

=⇒
(

2√x
)2

= 16

=⇒ x = 16

• x
2
3 = 4 =⇒

(
3√x

)2
= 4

=⇒ 2
√(

3√x
)2

= 2

=⇒
�� 3√x

�� = 2
=⇒

�� 3√x
��3 = 8

=⇒
����( 3√x

)3���� = 8

=⇒ |x| = 8
=⇒ x = ±8

•

Exercise. Solve the following equations.

x
3
4 = 8a) x

4
3 = 16b) x

1
2 = 25c)

75



6.1 Introduction to Exponential and Logarithmic Functions

Definition 6.1.1. Let b ∈ (0, 1)∪ (1,∞). We call functions of the form f(x) = bx exponential function,
and b is called the base of the function.

Example 6.1.2.

• f(x) = 2x is a (base 2) exponential function.

• g(x) = (12 )x is a (base 1
2) exponential function

• h(x) = 1x is not an exponential function because 1 ∉ (0, 1) ∪ (1,∞).

• p(x) = (−3)x is not an exponential function because −3 ∉ (0, 1) ∪ (1,∞).

Fact 6.1.3 (Properties of graphs of exponential functions). Let f(x) = bx be an exponential function.

(1) dom(f) = (−∞,∞) and ran(f) = (0,∞).

(2) f(x) > 0 on (−∞,∞).

(3) There are no x-intercepts.

(4) The y-intercept is (0, 1).

(5) If b ∈ (1,∞) then
• f(x) is increasing on (−∞,∞),
• as x → −∞, f(x) → 0, and as x → ∞, f(x) → ∞.

(6) If b ∈ (0, 1) then
• f(x) is decreasing on (−∞,∞),
• as x → −∞, f(x) → ∞, and as x → ∞, f(x) → 0.

Example 6.1.4.

y = 2x y = 1
2
x

y = bx if b ∈ (1,∞) y = bx if b ∈ (0, 1)

−5 5−1

4

9

x

y

−5 5−1

4

9

x

y

(1, b)
x

y

(1, b)
x

y
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Remark 6.1.5. The graphs of exponential functions pass the horizontal line test, and hence are
invertible. The inverses are what we call exponential functions.

Definition 6.1.6. Let f(x) = bx be an exponential function. Wewrite logb(x) = f−1(x) for the inverse
of f(x). We call logb(x) the logarithmic function of base b.

Note 6.1.7. Recall, if f−1(x) is the inverse of f(x). Then

• f(x) = y ⇐⇒ f−1(y) = x

• f−1(f(x)) = x for all x ∈ dom(f)

• f(f−1(x)) = x for all x ∈ dom(f−1)

Therefore,

• bx = y ⇐⇒ logb(y) = x

• logb(bx)) = x for all x ∈ (−∞,∞)

• blogb(x) = x for all x ∈ dom(logb)

Example 6.1.8. Evaluating logarithmic expressions is straightforward using these inverse proper-
ties.

log3(9) = log3(32) = 2• log2
( 1
8
)
= log2

(
1
22

)
= log2

(2−2) = −2•

log4(4142) = 142• log7
(√

7
)
= log7

(
71/2

)
= 1

2•

2log2(8) = 2log2(23) = 23 = 8• 5log5(11) = 11•

Note 6.1.9. Recall, dom(f−1) = ran(f) and ran(f−1(x)) = dom(f). Thus, since logb is the inverse of
the exponential function f(x) = bx, we have

dom(logb) = ran(f) = (0, 1) and ran(log b) = dom(f) = (−∞,∞).

Fact 6.1.10 (Properties of graphs of logarithmic functions). Let logb be a logarithmic function.

(1) dom(logb) = (0,∞) and ran(logb) = (−∞,∞).

(2) There is no y-intercept, and (1, 0) is the only x-intercept

(3) If b ∈ (1,∞) then
• f(x) is increasing on (0,∞) (everywhere where it defined),
• as x → ∞, f(x) → ∞, and as x → 0+, f(x) → −∞

(4) If b ∈ (0, 1) then
• f(x) is decreasing on (0,∞) (everywhere where it defined),
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• as x → ∞, f(x) → −∞, and as x → 0+, f(x) → ∞

Example 6.1.11.

y = log2(x) y = 1
2
x

y = bx if b ∈ (1,∞) y = bx if b ∈ (0, 1)

−1 4 9

−5

5

x

y

−1 4 9

−5

5

x

y

(b, 1)
x

y

(b, 1)
x

y

Remark 6.1.12.

(1) The function log10(x) is called the common log and is usually written log(x).

(2) The function loge(x) is called the natural log and is usually written ln(x).

Example 6.1.13.

log(100) = log10(100) = log10(102) = 2• log(0.1) = log10
( 1
10

)
= log10(10−1) = −1•

ln(e17) = loge(e17) = 17• eln(4x−1) = eloge(4x−1) = 4x − 1•

Remark 6.1.14. Recall, the domain of the square root function sqrt(x) = √
x is [0,∞). Since logarith-

mic functions have a similar domain, i.e., (0,∞), finding domains involving logarithms is similar
to finding domains involving square roots.

Example 6.1.15.

• Let f(x) = 3 +
√
x − 4. Observe x − 4 ⩾ 0 ⇐⇒ x ⩾ 4 =⇒ dom(f) = [4,∞).

• Let g(x) = 3 + log5(x − 4). Observe x − 4 > 0 ⇐⇒ x > 4 =⇒ dom(g) = (4,∞).

• Let h(x) = 2 log(3 − x) − 1. Observe, 3 − x > 0 ⇐⇒ 3 > x =⇒ dom(h) = (−∞, 3).

Remark 6.1.16. In general, if your function looks like f(x) = log(g(x)) for some g(x), then you find
dom(f) by finding where g(x) > 0.
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Example 6.1.17. Let f(x) = ln (
x

x−1
) . It is hard to solve x

x−1 > 0 directly, but we can sketch the graph
of g(x) = x

x−1 to find where g(x) > 0. Using our tools to sketch rational functions, observe tht the
graph y = g(x) has an x-intercept at (0, 0), a vertical asymptote at x = 1, and the same end behavior
as y = 1. We get the following sketch:

1
x

y

We see that g(x) > 0 on (−∞, 0) ∪ (1,∞). Hence, the domain of g is (−∞, 0) ∪ (1,∞).

Example 6.1.18. Finding inverses of logarithmic functions and exponential functions is straightfor-
ward using the fact that they are each others inverses.

• Let f(x) = 2x−1 − 3. Then

y = 2x−1 − 3 =⇒ x = 2y−1 − 3
=⇒ x + 3 = 2y−1 (add 3 to both sides)
=⇒ log2(x + 3) = log2(2y−1) (take log2 on both sides)
=⇒ log2(x + 3) = y − 1 (log2 is the inverse of 2x)
=⇒ log2(x + 3) + 1 = y (add 1 to both sides)

Hence, f−1(x) = log2(x + 3) + 1

• Let g(x) = log7(4x + 8). Then

y = log7(4x + 8) =⇒ x = log7(4y + 8)
=⇒ 7x = 7log7(4y+8) (take 7x on both sides)
=⇒ 7x = 4y + 8 (7x is the inverse of log7)
=⇒ 7x − 8 = 4y (subtract 8 from both sides)

=⇒ 7x − 8
4 = y (divide by 4 on both sides)

Hence, g−1(x) = 7x − 8
4 .
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6.2 Properties of logarithms

Fact 6.2.1. Let b ∈ (0, 1) ∪ (1,∞) and x, y ∈ (−∞,∞).

bx+y = bxby (Product Rule)

bx−y =
bx

by
(Quotient Rule)

bxy = (bx)y (Power Rule)

Remark 6.2.2. Recall the following inverse properties of logarithms and exponential functions:

• bx = y ⇐⇒ logb(y) = x

• logb(bx) = x for all x ∈ dom(bx) = (−∞,∞)

• blogb(x) = x for all x ∈ dom(logb) = (0,∞)

where b ∈ (0, 1) ∪ (1,∞). We can use these to derive rules for logarithms, for example:

logb(xy) = logb
(
blogb(x)blogb(y)

)
= logb

(
blogb(x)+logb(y)

)
= logb(x) + logb(y),

so logb(xy) = logb(x) + logb(y).

Fact 6.2.3. Let b ∈ (0, 1) ∪ (1,∞) and x, y ∈ (0,∞).

logb(xy) = logb(x) + logb(y) (Product Rule)

logb
(
x

y

)
= logb(x) − logb(y) (Quotient Rule)

logb(xy) = logb(x) · y (Power Rule)

Example 6.2.4. The previous fact allows us to rewrite logarithmic expressions.

• log3(9a) = log3(9) + log3(a) = log3(32) + log3(x) = 2 + log3(a)

• log2
(8
x

)
= log2(8) − log2(x) = log2(23) − log2(x) = 3 − log2(x)

• ln
((3x

e

)2)
= ln

(3x
e

)
· 2 = (ln(3x) − ln(e)) · 2 = ln(3x) · 2 − ln(e) · 2 = (ln(3) + ln(x)) · 2 − ln(e) · 2

= ln(3) · 2 + ln(x) · 2 − 1 · 2
= ln(3) · 2 + ln(x) · 2 − 2

• log
( √

x

yz3

)
= log

(√
x
)
− log

(
yz3

)
= log

(
x

1
2
)
−

(
log(y) + log

(
z3

))
=

1
2 log(x) − log(y) − 3 log(z)

Exercise. Expand and simplify the following using the logarithm properties.

log2(4x)a) log3(x4y2)b) log4(x2−2x−8) (Hint: factor)c)
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Example 6.2.5. Use the properties of logarithms to write the following as a single logarithm.

• log2(x) + log2(y + 1) = log2(x(y + 1)) = log2(xy + y)

• log3(x − 1) − log3(x + 1) = log3
(
x − 1
x + 1

)
• log(x) + 2 log(y) − log(z) = log(x) + log

(
y2

)
− log(z) = log

(
xy2

)
− log(z) = log

(
xy2

z

)
• 1 − 3 ln(x) = ln(e1) − ln(x) · 3 = ln(e) − ln(x3) = ln

(
e
x3

)
• log4(x)

3 − log4(y) + log4(z) · 9 = log4(x) ·
1
3 − log4(y) + log4(z) · 9

= log4
(
x

1
3
)
− log4(y) + log4

(
z9

)
= log4

(
3√x

)
− log4(y) + log4

(
z9

)
= log4

( 3√x
y

)
+ log4

(
z9

)
= log4

( 3√x
y

· z9
)
= log4

( 3√x · z9
y

)
Exercise. Use the properties of logarithms to write the following as a single logarithm.

4 log6(x) + 2 log6(y)a) log(x) − 1
3 log(y)b) 3 + log2(x)c)

Exercise. Use the properties of logarithms to write the following as a single logarithm.

ln(x3y2)a) log2
( 128
x2 + 4

)
b) log

(100x√y
3√10

)
c)

Exercise (Bonus). Derive the rule logb(xy) = logb(x) · y using fact and remark at the start of this
section.
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6.3 Exponential Equations

Remark 6.3.1. We know how to solve all kinds of equations.

Linear equations.

Simply solve them directly:
x + 2 = 3x − 6

−2x + 2 = −6
−2x = −8

1
−2 · −2x =

1
−2 · −8

x = 4

Quadratic equations.

Set equal to zero, factor/complete the square:
3x + 1 = −2x2 − x + 7

2x2 + 3x + 1 = −x + 7
2x2 + 4x + 1 = 7
2x2 + 4x − 6 = 0
x2 + 2x − 3 = 0

(x + 3)(x − 1) = 0
x = −3, 1

Absolute value equations.

Solve using cases:
1 − |x + 1| = −4
−|x + 1| = −5
|x + 1| = 5

±(x + 1) = 5
x = −6, 4

Rational equations.

Get rid of denominators, solve as others:
(x − 2) = 5x − 8

x + 2
(x − 2)(x + 2) = 5x − 8

x2 − 4 = 5x − 8
x2 − 5x + 4 = 0

(x − 1)(x − 4) = 0
x = 1, 4

Radical equations.

Translate into radicals, use radical/exponent identities to get rid of them, then solve as others:

x2/3 = 4(
3√x

)2
= 4

2
√(

3√x
)2

=
2√4�� 3√x

�� = 2
3√x = ±2(

3√x
)3

= (±2)3

x = ±8
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Example 6.3.2. To solve exponential equations, we apply their inverses (logarithms):

3x−4 = 8
log3(3x−4) = log3(8)

x − 4 = log3(8)
x = log3(8) + 4

• 5x − 11 = 3
5x = 14

log5(5x) = log5(14)
x = log5(14)

•

2x−1 = 25x+3

log2
(
2x−1

)
= log2

(
25x+3

)
x − 1 = 5x + 3

−4x − 1 = 3
−4x = 4

x = −1

• 32x = 91−x

32x =

(
32

)1−x
32x = 32·(1−x)

32x = 32−2x

log3
(
32x

)
= log3

(
32−2x

)
2x = 2 − 2x
4x = 2
x = 2

•

4 = 2 · 34x−1

2 = 34x

log3(2) = log3
(
34x−1

)
log3(2) = 4x − 1

log3(2) + 1 = 4x
log3(2) + 1

4 = x

• 67x−1 = 3x

log6
(
67x−1

)
= log6 (3x)

7x − 1 = log6 (3x)
7x − 1 = log6(3)x

7x − 1 − log6(3)x = 0
7x − log6(3)x = 1
(7 − log6(3))x = 1

x =
1

7 − log6(3)

•

5x−1 = 13x+1

log5
(
5x−1

)
= log5

(
13x+1

)
x − 1 = log5(13) · (x + 1)
x − 1 = log5(13) · x + log5(13) · 1
x − 1 = log5(13) · x + log5(13)

x − log5(13)x = log5(13) + 1
(1 − log5(13))x = log5(13) + 1

x =
log5(13) + 1
1 − log5(13)

• 3x
7x+2 = 1

3x = 7x+2

log(3x) = log(7x+2)
log(3)x = log(7)(x + 2)
log(3)x = log(7)x + log(7)2

log(3)x − log(7)x = log(7)2
(log(3) − log(7))x = log(7)2

x =
log(3) − log(7)

log(7)2

•
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e2x − 2ex = 0
e2x = 2ex

ln
(
e2x

)
= ln(2ex)

2x = ln(2) + ln(ex)
2x = ln(2) + x

x = ln(2)

• e−5x =
1
2

ln
(
e−5x

)
= ln

(1
2

)
−5x = ln

(1
2

)
x =

ln ( 1
2
)

−5
x =

ln(1) − ln(2)
−5

x =
ln(e0) − ln(2)

−5
x =

− ln(2)
−5

x =
ln(2)
5

•

Exercise. Solve the following equations.

3x−1 = 9a) 27x = 84−2xb) 10x−1 = 43x−1c) 5x−3 − 71−x = 0d)
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6.4 Logarithmic Equations

Example 6.4.1.

log5(1 − 3x) = log5(x2 − 3)
5log5(1−3x) = 5log5(x2−3)

1 − 3x = x2 − 3
−3x = x2 − 4

0 = x2 + 3x − 4
x2 + 3x − 4 = 0

(x + 4)(x − 1) = 0
x = −4, 1
x = −4

• log6(x + 4) + log6(3 − x) = 1
log6((x + 4)(3 − x)) = 1

6log6((x+4)(3−x)) = 61

(x + 4)(3 − x) = 6
−x2 + 12 − x = 6
−x2 − x + 6 = 0
x2 + x − 6 = 0

(x + 3)(x − 2) = 0
x = −3, 2

•

2 − ln(x − 3) = 1
− ln(x − 3) = −1
ln(x − 3) = 1
eln(x−3) = e1

x − 3 = e

x = e + 3

• log 1
7
(x) = −2(1

7

) log 1
7
(x)

=

(1
7

)−2
x =

1( 1
7
)2

x =
1
1
49

x = 49

•

log64
(9x − 2
2x + 3

)
=

1
3

64log64( 9x−22x+3 ) = 64 1
3

9x − 2
2x + 3 =

3√64
9x − 2
2x + 3 = 4

9x − 2 = 4(2x + 3)
9x − 2 = 8x + 12

x = 14

• log(x) − log(2) = log(x + 8) − log(x + 2)

log
(x
2
)
= log

(
x + 8
x + 2

)
10log( x2 ) = 10log( x+8x+2 )

x

2 =
x + 8
x + 2

x2 + 2x = 2x + 16
x2 − 16 = 0

(x − 4)(x + 4) = 0
x = −4, 4
x = 4

•

Exercise. Solve the following equations for x.

log5(3x − 4) = log5(6 − 2x)a) log2(x2 + 3x) = 2b)
ln(x2 − 24) = 0c) log4(x − 3) + log4(x + 3) = 2d)
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6.5 Applications of Exponential/Logarithmic Functions

Example 6.5.1. Suppose a patient in a hospital has a tumor. The tumor’s diameter in millimeters
grows according to the formulaD(t) = 10 · 4t/24 where t is the number of hours after it is detected.

• What was the diameter of the tumor 24 hours after it was detected?
D(24) = 10 · 424/24 = 10 · 41 = 40mm

• What was the diameter of the tumor when it was detected?
D(0) = 10 · 40/24 = 10 · 40 = 10 · 1 = 10mm

• When will the diameter be 160 mm?

D(t) = 160
10 · 4t/24 = 160

4t/24 = 16
log4

(
4t/24

)
= log4(16)

t/24 = 2
t = 48 hours

• How long does it take for the diameter of the tumor to double?

D(t) = 20
10 · 4t/24 = 20

4t/24 = 2
log4

(
4t/24

)
= log4(2)

log4
(
4t/24

)
= log4(41/2)

t/24 = 1/2
t = 12 hours

• How long does it take for the diameter of the tumor to triple?

D(t) = 30
10 · 4t/24 = 30

4t/24 = 3
log4

(
4t/24

)
= log4(3)

t/24 = log4(3)
t = log4(3)/24 hours
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Example 6.5.2. The population of undercover aliens in Las Cruces is modeled by

P(t) = 50
1 + 4− 1

3t

where t is the number of years after 2020.

• Find and interpret the meaning of P(0).

P(0) = 50
1 + 4− 1

3 ·0
=

50
1 + 40 =

50
2 = 25

There are 25 undercover aliens in Las Cruces in 2020.

• When will the population of undercover aliens in Las Cruces reach 40?

P(t) = 40
50

1 + 4− 1
3t

= 40

50 = 40(1 + 4− 1
3t)

50 = 40 + 40 · 4− 1
3t

10 = 40 · 4− 1
3t

1
4 = 4− 1

3t

log4
(1
4

)
= log4

(
4− 1

3t
)

−1 = −1
3t

3 = t, so in 2023

Example 6.5.3. Ethanol is a drug used to increase happiness and sociability. It decays in the blood-
stream according to the formula E(t) = 2e−0.02t, where E(0) = 4 is the initial amount of the drug
in the bloodstream. Find an expression only for the time until half of the Ethanol remains in the
bloodstream.

Need to find t when E(t) = 2:

4e−0.003t = 2

e−0.02t =
1
2

ln
(
e−0.02t

)
= ln

(
2−1

)
−0.02t = ln(2) · −1
0.02t = ln(2)

t = 50 ln(2)
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0.1 Sets and their notation

Definition 0.1.1. A set is a well-defined collection of objects which are called the elements of the set.

Remark 0.1.2. There are multiple ways to describe a specific set.

(1) The collection of letters in the word “coffee” – carefully describing the set in words.

(2) {c, o, f, e} – the roster method; explictly listing the elements between curly brackets.

(3) {ℓ | ℓ is a letter in the word “coffee”} – the set builder method; describe the set by the condi-
tion elements x need to satisfy to be in the set.

Note that (1)-(3) all describe the same set.

Remark 0.1.3. A set must either contain an element or not. Otherwise, it is not a well-defined
collection. We use the symbol ∈ (and ∉) to describe that an element is (or is not) in a set. For
example, let C = {c, o, f, e} be the set from the previous example. Then:

• c ∈ C since “c” is a letter in the word “coffee.”

• o ∈ C since “o” is a letter in the word “coffee”.

• ℓ ∉ C since “ℓ” is not a letter in the word “coffee.”

• 0 ∉ C since 0 is not a letter in the word “coffee”.

• ff ∉ C since “ff” is not a letter in the word “coffee.”

Example 0.1.4. The following sets will show up relatively often in this class:

• The empty set ∅ := {}. Note that ∅ is not the same as the number 0. (Actually it is)

• The natural numbers N := {1, 2, 3, . . . }.

• The integers Z := {. . . ,−2,−1, 0, 1, 2, . . . }.

• The real numbers R := {x | x has a decimal representation}.

Remark 0.1.5.

(1) Sets do not “count” elements. For example, there is no difference between the sets A = {a}
and B = {a, a}. Both sets contain only the element a, that is, a ∈ A and a ∈ B, and ℓ ∉ A and
ℓ ∉ B for any ℓ ≠ a. Therefore, it is uncommon to repeat an element when writing a set.

(2) Sets are “unordered.” For example, there is no difference between the sets {1, 2} and {2, 1}.

Definition 0.1.6. Suppose A and B are sets.
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• The intersection of A and B is the set of elements containing all the elements that are both in
A and B. Formally, A ∩ B := {x | x ∈ A and x ∈ B}.

• The union of A and B is the set of elements containing all the elements that are either in A or
B (or both). Formally, A ∪ B := {x | x ∈ A or x ∈ B}.

Example 0.1.7. LetA = {c, o, f, e} be the collection of letters in the word “coffee” and B = {e, f, c, t}
the collection of letters in the word “effect”. Then

A ∩ B = {c,f,e} and A ∪ B = {c,o,f,e,t}. (1)

Exercise. Expand the following unions/intersections.

{0, 1, 4} ∩ {−1, 4, 5, 6}a) {−2} ∪ {4,−2}b) N ∩ {−4,−2, 1, 0}c)
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