How to derive well-known dualities in point-free topology from Priestley duality

Guram Bezhanishvili and Sebastian Melzer

NEW MEXICO STATE UNIVERSITY

From Points to Neighborhoods and Beyond: Frames and Locales and their Applications II AMS Special Session

The University of Texas at El Paso, September 17, 2022

Dualities in pointfree topology

There are several prominent duality results in pointfree topology.

- The Hofmann-Lawson duality (1978) between the category of continuous frames and the category of locally compact sober spaces.
- The duality for stably continuous frames between the category of stably continuous frames and the category of stably locally compact spaces ([Gierz-Keimel, 1977], [Banaschewski, 1981], [Johnstone, 1981], [Simmons, 1982]).
- The Isbell duality (1972) between the category of compact regular frames and the category of compact Hausdorff spaces.

We will give a new proof of these results using **Priestley** duality.

Priestley duality (for frames)

Priestley duality

A **Priestley space** is a compact space *X* with a partial ordering \leq satisfying the **Priestley separation axiom**:

$$x \nleq y \implies \exists \text{clopen upset } U : x \in U \text{ and } y \notin U.$$

Consider the following categories.

Pries Priestley spaces and continuous order-preserving maps.

DLat bounded distributive lattices and bounded lattice homorphisms.

Theorem (Priestley, 1970)

Pries is dually equivalent to DLat

DLat ↔------ Pries

L-spaces

Frames are bounded distributive lattices that satisfy $a \land \bigvee S = \bigvee \{a \land s \mid s \in S\}.$

Hence, they correspond to special Priestley spaces.

- An Esakia space is a Priestley space with the property that the downsets of clopen sets are clopen.
- An Esakia space is extremally order-disconnected if the closure of every open upset is open.
- An L-space (localic space) is an extremally order-disconnected Esakia space.

Lemma

 $D \in \mathbf{DLat}$ is a frame iff its Priestley dual X_D is an L-space

L-morphisms

Similarly, frame homomorphisms are special bounded lattice homomorphisms, so they correspond to special order-preserving continuous maps.

An L-morphism is a continuous order-preserving map $f: X_1 \to X_2$ between Priestley spaces such that $cl(f^{-1}(U)) = f^{-1}(cl(U))$ for all open upsets U of X_2 .

If *f* is the dual of a bounded lattice homomorphism *h* then we have:

Lemma

h is a frame homomorphism iff f is an L-morphism

Pultr-Sichler duality

Consider the following categories.

Frm frames and frame homomorphisms.

LPries L-spaces and L-morphisms.

Theorem (Pultr-Sichler, 1988)

The functors establishing Priestley duality restrict to **Frm** and **LPries**

DLat \longleftrightarrow Pries Yr Frm \longleftrightarrow LPries

Spatiality

A frame *L* is **spatial** if it is isomorphic to the frame of opens of a space.

In the language of the Priestley duality we have the following.

Theorem

L is spatial iff $Y_L = \{x \in X_L \mid \downarrow x \text{ is } clopen\}$ is dense in X_L

6

SL-spaces

An SL-space (spatial L-space) is an L-space X such that $Y := \{x \in X \mid \downarrow x \text{ is clopen}\}$ is dense in X.

Consider the following categories.

SL the full subcategory of LPries containing SL-spaces.

SFrm the full subcategory of **Frm** containing spatial frames.

Theorem

The functors establishing Priestley duality restrict to **SL** and **SFrm**

Sober spaces

Let Sob be the category of sober spaces.

Theorem

There is an equivalence between SL and Sob

Consequently, we obtain the fact that **Sob** is dual to **SFrm**.

It is the map $X \mapsto Y = \{x \in X \mid \downarrow x \text{ is clopen}\}$ that establishes this theorem. Here, we view Y as a space where the opens are exactly the clopen upsets of X intersected down to Y.

In fact, the space of points of a frame L is exactly the space Y_L .

Theorem

 Y_L is homeomorphic to the points of L

Deriving Hofmann-Lawson duality

Hofmann-Lawson duality

A frame L is **continuous** if $a = \bigvee \{b \in L : b \ll a\}$ for each $a \in A$, where \ll is the **way-below** relation. A frame homomorphism is **proper** if it preserves \ll .

A continous map $f: X \to Y$ is **proper** it $\downarrow f(A)$ is closed for every closed $A \subseteq X$, and $f^{-1}(B)$ is compact for every compact saturated set $B \subseteq Y$.

CFrm continuous frames and proper frame homomorphisms.

LCSob locally compact sober spaces and proper continuous maps.

Theorem (Hofmann-Lawson, 1978)

CFrm is dually equivalent to LCSob

Kernels of clopen upsets

Let X be an L-space, and U, V clopen upsets of X. We write $U \ll V$ if

$$\forall W \in \mathsf{OpUp}(X) : V \subseteq \mathsf{cl}(W) \implies U \subseteq W$$

The **kernel** of *U* is $ker(U) = \bigcup \{V \in ClopUp(X) \mid V \ll U\}.$

Lemma

Suppose X is the Priestley space of the frame L. Then $a \ll b$ iff $\varphi(a) \ll \varphi(b)$ iff $\ker \varphi(a) \subseteq \varphi(b)$ for all $a,b \in L$

Here $\varphi : L \to \text{ClopUp}(X_L)$ is the Stone map defined by $\varphi(a) = \{x \in X_L \mid a \in X\}.$

Packed L-spaces

Let *X* be an L-space.

- $U \in \text{ClopUp}(X)$ is packed if $\ker(U)$ is dense in U.
- X is heriditarily packed if every $U \in \text{ClopUp}(X)$ is packed.
- An L-morphism $f: X \to Z$ is proper iff

$$f^{-1}(\ker U) \subseteq \ker f^{-1}(U)$$

for every clopen upset $U \subseteq Z$.

Let **HPL** be the category of heriditarily packed L-spaces and proper L-morphisms.

Deriving Hofmann-Lawson duality

Theorem

The functors establishing Priestley duality restrict to **CFrm** and **HPL**

Theorem

The functors establishing the duality between **SL** and **Sob** restrict to **HPL** and **LCSob**

Hofmann-Lawson duality is an immediate consequence.

7 7 Frm \to LPries \// SFrm \longleftrightarrow SL \longleftrightarrow Sob CFrm HPL LCSob

Deriving the duality for stably

continuous frames

Stably continuous frames

A continuous frame *L* is **stably continuous** if $a \ll b$, *c* implies $a \ll b \wedge c$ for all $a, b, c \in L$.

A frame L is compact if $1 \ll 1$; a frame L is stably compact if it is compact and stably continuous.

A space *X* is **stably locally compact** if it is locally compact, sober, and coherent (binary intersections of compact saturated sets are compact); *X* is **stably compact** if it is compact and stably locally compact.

The dualities for stably continuous frames

- **StCFrm** full subcategory of **CFrm** containing stably continuous frames.
- **StKFrm** full subcategory of **CFrm** containing stably compact frames.
- **StLCSp** full subcategory of **LCSob** containing stably locally compact spaces.
- **StKSp** full subcategory of **LCSob** containing stably compact spaces.

Theorem (Gierz-Keimel, Banaschewski, Johnstone, Simmons)

- 1. StCFrm is dually equivalent to StLCSp
- 2. StKFrm is dually equivalent to StKSp

Stability in L-spaces

Let L be frame, X_L its Priestley space, and $a, b \in L$. Then

$$(\forall c \in L)(c \ll a, b \Rightarrow c \ll a \land b) \text{ iff } \ker \varphi(a) \cap \ker \varphi(b) = \ker \varphi(a \land b)$$

An L-space X is Scott-stable iff $\ker U \cap \ker V = \ker(U \cap V)$ for all clopen upsets U, V of X.

Let **SHPL** be the full subcategory of **HPL** containing Scott-stable L-spaces.

Theorem

- 1. StCFrm is dually equivalent to SHPL
- 2. SHPL is equivalent to StLCSp

Compactness in L-spaces

An SHPL-space X is **tightly packed** iff $\ker X = X$.

Let TPL be the full subcategory of SHPL containing tightly packed spaces.

Theorem

- 1. StKFrm is dually equivalent to TPL
- 2. TPL is equivalent to StKSp

The dualities for stably continuous frames are an immediate consequence of the last two theorems.

```
DLat **** Pries
 Frm \to LPries
 SFrm \longleftrightarrow SL \longleftrightarrow Sob
 \overline{\mathsf{CFrm}} \longleftrightarrow \mathsf{HPL} \longleftrightarrow \mathsf{LCSob}
StCFrm \longleftrightarrow SHPL \longleftrightarrow StLCSp
```

Deriving Isbell duality

Isbell duality

A frame *L* is regular if $a = \bigvee \{b \in L \mid b \prec a\}$ for each $a \in L$, where \prec is the well-inside relation, i.e., $a \prec b$ if $a^* \lor b = 1$.

Consider the following categories.

KRFrm full subcategory of Frm containing compact regular frames.

KHaus full subcategory of **Sob** containing compact Hausdorff spaces.

Theorem (Isbell, 1972)

KRFrm is dually equivalent to KHaus

Regularity in L-spaces

Let X be an L-space and $U \subseteq X$ a clopen upset. Define the regular part of U as reg $U = \bigcup \{V \in \text{ClopUp}(X) \mid \downarrow V \subseteq U\}$.

X is regular if reg U is dense in U for every clopen upset U.

Let RTPL be the full subcategory of SL containing regular tightly packed spaces.

Lemma

Every L-morphism from a tightly packed L-space to a regular L-space is proper

Hence, RTPL is a full subcategory of TPL. Dually, this implies the well-known fact that every frame homomorphism between compact regular frames is proper.

Deriving Isbell duality

We can restrict our dualities for stably continuous frames to obtain:

Theorem

- 1. KRFrm is dually equivalent to RTPL
- 2. RTPL is equivalent to KHaus

Isbell duality is an immediate consequence.

```
\gamma
 → Sob
 7
CFrm ····· HPL · LCSob
StCFrm 

SHPL 

                       → StLCSp
\mathsf{StKFrm} \longleftrightarrow \mathsf{TPL} \longleftrightarrow \mathsf{StKSp}
KRFrm ← RTPL ← KHaus
```

The role of kernels

Going down the chain of dualities, the map

$$\ker : \operatorname{ClopUp}(X) \to \operatorname{OpUp}(X)$$

became more refined.

In short, the following happens:

 $X \in \mathbf{HPL}$ implies ker is injective.

 $X \in SHPL$ implies ker is a \land -homomorphism.

 $X \in TPL$ implies ker is a topological interior.

 $X \in \mathbf{RTPL}$ implies ker and reg coincide.

Thank you!