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Canonical formulas

Introduced by Zakharyaschev (1980s-90s) for
intermediate and modal logics.

Frame-theoretic and dependent on the exact dual
structure of Heyting and K4-algebras.

Unclear how to apply it to other logics, for example,
Intuitionistic modal logic.

G. Bezhanishvili and N. Bezhanishvili (2000s-10s) have
developed a uniform algebraic approach relying on
locally finite reducts (collaborators include Gabelaia,
Ghilardi, lemhoff, Ilin, Jibladze, de Jongh).



Constructing canonical formulas

Practically, we require two procedures:

1. For each formula ¢ find refutation patterns:

- Collection of algebras A, ...,A, with parameter sets
Di,...,Dp.
- This is where local finiteness comes in handy.
2. An encoding function « of refutation patterns into
formulas.
- Similar to the construction of Jankov formulas.

Note, ¢ has to be semantically equivalent to



Applications of canonical formulas

The method provides a lot of structure in the study of
intermediate and modal logics:

- Fundamental instances of canonical formulas
characterize logics with good properties, e.g.
subframe and cofinal subframe logics.

- Preservation results, e.g. Zakharyaschev obtained a
proof for the Dummett-Lemmon conjecture that the
least modal companion of a Kripke-complete
intermediate logic is Kripke-complete.



Goals of this talk

Discuss canonical formulas for intuitionistic modal logic:

- Stable canonical formulas for K.
- Steady canonical formulas for PLL.

Show canonical formulas at work:

- Defining big classes of logics with the finite model
property (fmp).
- Lining out preservation results.



Heyting algebras with modal operators

Recall, a Heyting algebra is a bounded lattice A with a
binary operator — such that

cha<biffc<a—b foralla,b,ce A

A unary operator J on a bounded lattice A is modal iff
=1
O(aAb)=0aA0b foralla,beA
An IK-algebra is a Heyting algebra with a modal operator.
Besides, it is an [K4-algebra iff
Oa < 0O0a forall a € A.



Refutation patterns

Heyting algebras have two established locally finite
reducts:

1. The —-free reduct: distributive bounded lattices.
2. The v-free reduct: bounded implicative semilattices.
Moreover, given a finite subset of some Heyting algebra, a

finitely generated algebra of these reducts can be
extended back into a Heyting algebra.

The same can be achieved for [K-algebras with the
(—,0)-free reduct.



Refutation patterns

This method, which is also known as filtration, results in
subalgebras of the reduct which “semi”-preserve [
Definition - Stability

A bounded lattice homomorphism h : A — B between
IK-algebras is stable iff hCOda < Oha for all a € A.

Basically, for each IK-algebra B ¥ ¢ we can find a finite
stable subalgebra A ¥ ¢.

Additionally, we use parameter sets D_, C A and Do C A
to describe crucial parts of the valuation that refutes ¢.

The tuple (A,D_,, Dp) is a refutation pattern for ¢.



Encoding function

We encode refutation patterns with a generalization of
Jankov formulas.

Instead of encoding the full structure of IK4-algebras we
only encode the bounded lattice structure fully, and the
missing operators over the parameter sets.

Ultimately, we obtain the following:

Theorem

B¥ «(A,D_,, Dn) iff there is a homomorphic image C of B
and a stable bounded lattice embedding from A into C
which respects the parameters.




Stable canonical formulas for IK4

Recapping:

1. We can find refutation patterns using via the local
finiteness of (O, —)-free IK-algebras.

2. We can encode refutation patterns of IK4-algebras
into formulas using generalized Jankov formulas.

Theorem

All intuitionistic modal logics extending IK4 are
axiomatizable by stable canonical formulas.




Example axiomatizations

ISt = K4 @ afe) B a(o)

IS4.3 = ISk a(V) @ a(@)

IKaCh = K4 ® a(O, o,{2})® a(g, 2, {{+}})

PLL = IK4.C4EB04(I) @a(@,@,{{*}}) @a(%,@,{%})

N.B.: These are Kripke frames, the “real” axiomatizations use their complex algebras.



Finite model property

Usually, fundamental instances of canonical formulas
instantiate classes of logics with the fmp.

Call a(A) := a(A, @, @) a stable formula.

Theorem - Stable logics
All transitive intuitionistic modal logics axiomatized by
stable formulas have the fmp.

The key is filtration; stable logics are closed under
filtration!
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Mirroring stability

Recall, Heyting algebras have two established locally
finite reducts:

1. The —-free reduct.
2. The v-free reduct.

In the intermediate setting both generate canonical
formulas.

We used the (—, [)-free reduct of IK4-algebras to obtain
stable canonical formulas.

Can we do something similar with the (v, )-free reduct?

We can but it doesn’'t work for IK4-algebras...
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Nuclear algebras

Nuclear algebras are IK4-algebras A that satisfy:
a<0Oa and 0Oda < Oa

for each a € A.
They give the algebraic semantics for PLL.
We call any logic that extends PLL a lax logic.

We will use the (\v,O)-reduct of nuclear algebras to
define steady canonical formulas for lax logics.
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Steady canonical formulas

Steady canonical formulas (A, Dy, D) mirror stable
canonical formulas in the sense that they encode [J in
the other direction.

Definition - Steadiness

A function h : A — B between nuclear algebras is steady
Iff Oha < hOa for all a € A.

Theorem - Refuting steady canonical formulas

B ¥ (A, Dy, Dp) iff there is a homomorphic image C of B
and a steady bounded implicative semilattice
embedding from A into C that respects the parameters.
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Steady canonical formulas

Theorem

All lax logics are axiomatized by steady canonical
formulas.

Again, we obtain an fmp result from fundamental
instances of these formulas.

A steady formula is a steady canonical formulas of the
form B(A) := (A, @, D).

Theorem - Steady logics

All lax logics axiomatized by steady formulas have the
fmp.
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Examples of steady logics

L n+m>2
S o
Theorem
1. PLL @ B(F2™) is the lax logic of all finite rooted

frames that do not have n + m maximal elements
with at least n nuclear.

2. PLL & B(F2™) is the lax logic of all finite o-rooted
frames that do not have n + m maximal elements
with at least n nuclear.




Esakia duality and beyond

Esakia duality is an order-topological representation of
Heyting algebras and their homomorphisms.

G. Bezhanishvili and Ghilardi (2007) extended Esakia
duality for nuclear algebras. The extended Esakia spaces
are called nuclear spaces.

G. Bezhanishvili and N. Bezhanishvili (2009) generalised
Esakia duality to account for {A, —}-homomorphisms
between Heyting algebras.

To account for steady canonical formulas we need to
extend this duality to the nuclear case.



Steady canonical formulas dually

A steady morphism is a partial Esakia morphism f: X — Y
such that:

- x € dom(f) implies fTtx] = 1fx and R[fx] C fIR[X]]

y —— fy Z --—-- ry Z -—--- >y
<T B < TS RI TR
X_f>fx X — 5 X—f>fX

- fItx] =ty for some y € Y implies x € dom(f)
- fTtx] is closed for all x € X
- X\ If'(Y\ U) is clopen for each clopen upset U C Y.



Steady subframes

In the intermediate setting finite domains of onto partial
Esakia morphisms are subframes.

Therefore, subframe logics are closed under finite
domains of onto partial Esakia morphisms (finite domain

property).

Steady logics have the finite domain property for steady
morphisms.

In this sense steady logics are subframe lax logics.
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Steady subframes

Definition - Steady subframes
(Y, <y,Ry) is a steady subframe of (X, <x, Rx) Iiff

- (Y, <y) is a subframe of (X, <x),
- Ry is the largest lax relation contained in Ry N Y.

Theorem - Steady subframe logics

A lax logic is axiomatized by steady formulas iff it is
generated by a class closed under steady subframes.
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Canonical formulas at work

Theorem

Suppose an intermediate logic ' = IPC& I has one of the
properties: fmp, Kripke completeness, tabularity, or
decidability. Then the lax logic L = PLL & T also has the
same property.

Strategy:

1. For each L¥ ¢ find some L' ¥ ¢'.
2. Transform an L’-frame X' ¥ ¢/ into an L-frame X ¥ ¢.

Above all, use (steady) canonical formulas!
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Lax canonical formulas

Note, there is a strictly bigger reduct that we can use for
lax logics:

Theorem - G. Bezhanishvili, N. Bezhanishvili, Carai,
Gabelaia, Ghilardi, and Jibladze (2021)

The Vv-free reduct of nuclear algebras is locally finite.

However the associated canonical formulas are less
flexible:

- Makes the proof for the previous theorem awkward.
- No simple axiomatization for steady logics.

- No finite domain property.

- Unlikely to be applicable to logics weaker than PLL.
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Conclusion

The method of canonical formulas is a excellent tool to

1. Obtain classes of logics with the finite model
property.

2. Prove preservation results.

The method is very exportable to the setting of
intuitionistic modal logics with .

Steady canonical formulas mirror stable canonical
formulas and characterize lax logics in a flexible way.
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More preservation results involving stable and steady
canonical formulas.

Blok-Esakia theorems, e.g., embedding intuitionistic
modal logics into bimodal logics.

Generally, investigating “semantic” translations.

Canonical formulas for multimodal logics and
intuitionistic modal logic with ¢ as primitive.

Steady (canonical) formulas with the (O, —)-free reduct.
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Thank you!



Appendix: encoding function

Let (A, D_,, Dp) be a refutation pattern. For eacha € A
introduce a fresh propositional variable pq.

Then define the stable canonical formula associated with
(A,D_,,Dp) as «(A,D_,,Dn) == ANOT[I] — \/ OF[A] where
[ ={po <> 0,p <> 1}

U{pavs <> Pa V Py | (a,b) € A’}

U {Parb <> Pa A Pb | (a,b) € A%}

U {pos — Op, | a € A%}

U{Pab > pa— po | (a,b) € D}

U {pra <+ Opa | a € Do}
and A ={p, — py | (a,b) € A> & a £ b}.



Appendix: encoding function

Note, stable canonical rules for IK would be given by I'/A
but to characterize these as formulas we need to use
IK4-algebras.

Lemma o .
An IK-algebra is s.i. Iff there exists an element a # 1 such

that for any b # 1 there is a natural number Rk such that
A<, Ob < a.

Corollary o .

An IK4-algebra is s.i. iff its O -fixed points have a
second-largest element.

Nonetheless, the specific construction of such formulas
Is not important. We only have to make sure we get a
fitting refutation criterion.



Appendix: refutation criterion

Lemma ' . o
B¥ a(A,D_,, Dn) iff there is a homomorphic image C of B

and an stable bounded lattice embedding h from A into C
which respects the parameters.

hCa < Oha forallaeA
Oha = hOa forall a € Dn
h(a — b) =ha — hb forall (a,b) € D_,.

B S hA

D_.Dp

This reason this is the desired refutation criterion lies in
the locally finite reduct.



Appendix: stable filtration

That is, given B ¥ ¢ we can find an algebra A that refutes

¢ and is |subf(¢)|-generated as a bounded distributive
lattice.

Let A be the bounded lattice generated by v[subf(¢)] C B.
Define the missing operations on A as
a—ab=/{ceA|cra<b}
Oaa = \/{Oc|Oc e A & Oc <Oa}

Then [,a = Oa whenever Oa € v[subf(¢)] and
a—x b=a— bwhenever a— b € v[subf(¢)].



Appendix: stable filtration

Then A is embeddable into B with a bounded lattice
homomorphism h that respects the missing operations
on (selected) elements of v[subf(¢)].

However, the definition of the missing operations allows
a stronger assumption on h. Namely,

hOa < Oha foralla,be A (Stability)

In other words, this “finitization” semi-preserves .



Appendix: proof of theorem

1. For each L ¥ ¢ find some L' ¥ &'.

We can assume ¢ = (A, Dy, Dp).

Besides, we have canonical formulas for int. logic, e.g.:
B'(A’, Dy) for the Heyting reduct A’ of A.

Moreover, we can show L ¥ B(A, Dy, Dn) implies
L"¥ B'(A', Dy).



Appendix: proof of theorem

2. Transform an L'-frame X ¥ (A", D) into an L-frame
X ¥ B(A, Dy, D).

The trick for achieving this lies in S-spaces — an Esakia
space (X, <) with a subframe S C X.

G. Bezhanishvili and Ghilardi (2007) showed that nuclear
spaces and S-spaces are in a one-to-one correspondence.

This means that we can define a nuclear frame from an
int. Kripke frame by marking some subset.

g

> C, » A,

/ h /% ’
X — (X )* < D\/

We use h~'[g[f"[Sa]]] to define a nuclear relation on X.
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