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Algebraic lattices

A complete lattice is algebraic if every element is the join of compact elements
below it.

Algebraic lattices play an important role in algebra:

The lattice of subgroups of a group is algebraic.
The lattice of subspaces of a vector space is algebraic.
More generally, the lattice of subuniverses of any algebra is algebraic.
The lattice of ideals of a ring is algebraic.
More generally, the lattice of congruences of any algebra is algebraic.
[Nachbin, 1949] Algebraic lattices are exactly the ideal lattices of
join-semilattices.
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Algebraic frames

If an algebraic lattice is distributive, then it satisfies the infinite distributive law
a ∧

∨
S =

∨
{a ∧ s | s ∈ S}, hence is a frame.

Frames are the focus of study in pointfree topology, as they generalize lattices of
open sets of topological spaces.

There are several important examples of algebraic frames:

Arithmetic frames also known as M-frames
(compact elements form a sublattice)
Coherent frames
(compact elements form a bounded sublattice)
Stone frames
(compact elements form a boolean subalgebra)
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Adjunction
There is a well-known dual adjunction between the following categories:

Top topological spaces and continuous maps
Frm frames and frame homomorphisms

This adjunction restricts to a dual equivalence between the following
subcategories. (Recall, a frame L is spatial if it is isomorphic to the frame of opens
of a space.)

Sob full subcategory of Top consisting of sober spaces
SFrm full subcategory of Frm consisting of spatial frames

Theorem (Dowker-Papert, 1966)

Sob and SFrm are dually equivalent.

4 / 18



Adjunction
There is a well-known dual adjunction between the following categories:

Top topological spaces and continuous maps
Frm frames and frame homomorphisms

This adjunction restricts to a dual equivalence between the following
subcategories. (Recall, a frame L is spatial if it is isomorphic to the frame of opens
of a space.)

Sob full subcategory of Top consisting of sober spaces
SFrm full subcategory of Frm consisting of spatial frames

Theorem (Dowker-Papert, 1966)

Sob and SFrm are dually equivalent.

4 / 18



Compactly based spaces
A space is compactly based if it has a basis of compact sets.
A continuous map between compactly based sober spaces is coherent if the
inverse image of a compact open set is compact.

A frame homomorphism is coherent if it maps compact elements to compact
elements.

Now we have the following categories.

KBSob compactly based sober spaces and coherent maps
AlgFrm algebraic frames and coherent frame homomorphisms

Theorem (Hofmann-Keimel, 1972)

KBSob and AlgFrm are dually equivalent.
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Dualities
Restricting to the full subcategories of arithmetic frames, coherent frames, and
Stone frames yields the following dualities:

AlgFrm AriFrm CohFrm StoneFrm

KBSob SKBSp Spec Stone

⩾ ⩾ ⩾

⩾ ⩾ ⩾

where we have the following full subcategories of KBSob:

SKBSp stably compactly based spaces
(intersection of two compact opens is compact)

Spec spectral spaces
(stably compactly based + compact)

Stone Stone spaces
(spectral + zero-dimensional)
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Priestley duality
In this talk we will describe these dualities using the machinery of Priestley
duality.

A Priestley space is a compact space with a partial order that separates elements
via clopen upsets.

Consider the following categories:

DLat bounded distributive lattices and their homomorphisms
Pries Priestley spaces and order-preserving continuous maps

Theorem (Priestley, 1970)

DLat and Pries are dually equivalent.
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Pultr-Sichler duality
Since frames are special bounded distributive lattices, they are amenable to
Priestley duality.

An Esakia space is a Priestley space such that the downset of each clopen is
clopen.
An Esakia space is extremally order-disconnected if the closure of each open
upset is open.
An L-space (localic space) is an extremally order-disconnected Esakia space.
An L-morphism (localic morphism) is an order-preserving continuous map f
such that cl f−1(U) = f−1(cl U) for each open upset U.

Let LPries be the category of L-spaces and L-morphisms.

Theorem (Pultr-Sichler, 1988)

LPries and Frm are dually equivalent.
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Spatiality
Let L be a frame and X the Priestley space of L.

Definition

1. The spatial part of X is Y := {x ∈ X | ↓x is clopen}.
2. X is an SL-space if Y is dense in X.
3. SLPries is the full subcategory of LPries of SL-spaces.

If we view Y as a topological space, where V ⊆ Y is open iff V = U ∩ Y for some
U ∈ ClopUp(X), then Y is exactly the space of points of L.

Theorem

1. L is spatial exactly when Y is dense in X.
2. SLPries is equivalent to Sob and dually equivalent to SFrm.
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Scott upsets
Algebraic frames are special because they have an abundance of compact elements.

Compact elements correspond to clopen Scott upsets in the language of Priestley
spaces.

Definition

A Scott upset is a closed upset F ⊆ X with the property that min F ⊆ Y.

XY

F

min F
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Algebraic L-spaces
For U ∈ ClopUp(X), let core U =

⋃
{V ∈ ClopSUp(X) | V ⊆ U}.

Definition

An L-space is algebraic if core U is dense in U for each clopen upset U.

Theorem

Let L be a frame, X its Priestley space, and Y the spatial part of X. The following are
equivalent.

1. L is an algebraic frame.
2. X is an algebraic L-space.
3. Y is a compactly based sober space.
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Algebraic L-spaces

Definition

An L-morphism f : X1 → X2 is coherent if

f−1(core U) ⊆ core f−1(U) for all U ∈ ClopUp(X2).

Let AlgLPries be the category of algebraic L-spaces and coherent L-morphisms.

Theorem

AlgLPries is equivalent to KBSob and dually equivalent to AlgFrm.
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Arithmetic L-spaces

Definition

An algebraic L-space is arithmetic if

core(U ∩ V) = core U ∩ core V for all U,V ∈ ClopUp(X).

Let AriLPries be the full subcategory of AlgLPries consisting of arithmetic L-spaces.

Theorem

AriLPries is equivalent to SKBSp and dually equivalent to AriFrm.
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Coherent L-spaces

Definition

1. An L-space X is L-compact if core X = X.
2. An arithmetic L-space is coherent if it is L-compact.

Let CohLPries be the full subcategory of AriLPries consisting of coherent L-spaces.

Theorem

CohLPries is equivalent to Spec and dually equivalent to CohFrm.
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Zero-dimensional L-spaces
Recall, a frame is zero-dimensional if every element is the join of complemented
elements below it. These elements correspond to clopen upsets that are also
downsets; we call such sets clopen bisets.

Definition

1. cen U :=
⋃
{V ∈ ClopBi(X) | V ⊆ U}.

2. X is a zero-dimensional L-space if cen U is dense in U for each
U ∈ ClopUp(X).

Lemma

L is a zero-dimensional frame iff X is a zero-dimensional L-space. Either implies Y
is a zero-dimensional space. The converse holds if Y is dense in X (i.e. L is spatial).
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Stone L-spaces

Definition

1. A Stone L-space is an L-compact zero-dimensional L-space.
2. Let StoneLPries be the category of Stone L-spaces and L-morphisms.

Every L-morphism between Stone L-spaces is coherent, and hence StoneLPries is a
full subcategory of CohLPries.

Theorem

StoneLPries is equivalent to Stone and dually equivalent to StoneFrm.
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Thank you!



Categories

Category Objects Morphisms

AlgFrm algebraic frames coherent frame homomorphisms
AriFrm arithmetic frames coherent frame homomorphisms
CohFrm coherent frames coherent frame homomorphisms
StoneFrm Stone frames frame homomorphisms

KBSob compactly based sober spaces coherent maps
SKBSp stably compactly based spaces coherent maps
Spec spectral spaces coherent maps
Stone Stone spaces continuous maps

AlgLPries algebraic L-spaces coherent L-morphisms
AriLPries arithmetic L-spaces coherent L-morphisms
CohLPries coherent L-spaces coherent L-morphisms
StoneLPries Stone L-spaces L-morphisms



Connection to Priestley and Stone duality

Let L be a coherent frame, XL its Priestley space, and YL the spatial part of XL.

Then the collection K(L) of compact elements is a bounded distributive lattice, and
the poset of prime filters XK(L) is isomorphic to (YL,⊆).

However, the Priestley topology of XK(L) is not the same as the topology of XL
restricted to YL.

The topology on YL corresponding to XK(L) is generated by the basis
{(U \ V) ∩ YL | U,V ∈ ClopSUp(XL)}.

Similarly, if L is a Stone frame then K(L) is a boolean algebra whose Stone dual
XK(L) corresponds to YL with the topology generated by {U ∩ YL | U ∈ ClopBi(XL)}.



Complemented being exactly compact elements
Recall, if L is a Stone frame, then an element is complemented iff it is compact.

In the language of Priestley duality we get:
Lemma

Let X be a Stone L-space. Then
ClopSUp(X) = ClopBi(X).
core U = cen U for each U ∈ ClopUp(X).

Morever, we have the following more general observations:
Lemma

1. If X is L-compact, then every closed biset is a Scott upset.
2. If X is L-regular, then every Scott upset is a biset.


