
Bachelor Informatica

Thread-oriented program
algebra

S.D. Melzer

June 8, 2018

Supervisor(s): dr. I. Bethke and dr. A. Ponse

Signed:

In
f
o
r
m
a
t
ic
a
—

U
n
iv
e
r
si
t
e
it

v
a
n
A
m
st

e
r
d
a
m

2

Abstract

This thesis introduces TOP (Thread-Oriented Program algebra) and TOP2. TOP is
an alternative to PGA (ProGram Algebra) and the semigroup C . TOP2 is a 2-dimensional
variant of TOP.

In this thesis several properties of TOP and TOP2 are studied. All TOP instruction
sequences model regular threads and all regular threads can be modelled by TOP instruction
sequences. The behaviour expressed by a TOP instruction sequence of length n can be
defined by a linear specification of n + 1 equations. The behaviour defined by a linear
specification of m equations can be expressed by a instruction sequence of length 3m−

⌈
m
2

⌉
.

Analogous to instruction sequences, TOP2 uses instruction planes to model sequential
programs. TOP2 is equally expressive as TOP but does not require arbitrarily large jumps
to express all regular threads. TOP on the other hand does require arbitrarily large jumps
in both directions.

3

4

Contents

1 Introduction 7

2 Preliminaries 9
2.1 Basic Thread Algebra . 9
2.2 TOP instruction sequences . 11

3 On the expressiveness of TOP 15
3.1 Regular threads . 15
3.2 Reduced instruction sets . 16

4 On the length of TOP instruction sequences 19
4.1 Instruction sequence to thread . 19
4.2 Thread to instruction sequence . 20

5 Multidimensional programming languages 25
5.1 Instruction planes . 26
5.2 Expressiveness results . 28

6 Conclusions 33
6.1 Acknowledgements . 33

Bibliography 35

5

6

CHAPTER 1

Introduction

Bergstra and Loots presented ProGram Algebra (PGA) in [2]. PGA is an algebra of programs
which is supposed to capture the core of imperative sequential programming languages. The
syntax of PGA serves as a very simple program notation. The primitives of this notation are
designed to enable single pass execution of instruction sequences. This design choice resulted in
a directional bias, instruction sequences are always executed in a left-to-right manner. While
this bias is clearly existing in most practical imperative programming languages, the assumption
that this is a core property of imperative programming languages should not be made cautiously.
It is likely that this is merely a result of the natural language of the designers of programming
languages.

Bergstra and Ponse introduced C as an alternative to PGA in [3]. C is a semigroup of finite
instruction sequences in which programs can be represented without directional bias. C has
both forward and backward instructions and a C -expression can be interpreted starting from
any instruction. Properties of C are studied by Bergstra and Ponse in [3], and Schroevers in
[10]. It is proven that C requires arbitrarily large jumps in both directions to model all regular
threads.

The semantics of C and PGA are defined using Basic Thread Algebra (BTA). BTA is a set of
axioms used to describe the behaviour of sequential programs. BTA expressions, called threads,
can describe finite and infinite behaviour. PGA models infinite threads with infinite instruction
sequences. In contrast C models infinite threads with finite instruction sequences. In practice
any program must be finite, thus C appears to be a more practical approach than PGA.

Schroevers introduced a variant of C in [10]. This variant is denoted TOP and is the main
topic of this thesis. The semantics and syntax of TOP are almost identical to C . Only the test
instructions are defined slightly different. Concretely, the test instructions of TOP are chosen
to have a direct correlation with BTA, while the test instructions of C are more or less based
on PGA. This correlation might be advantageous to TOP since programs can therefore closely
match the BTA thread they model.

In this thesis some properties of TOP are studied. First, the semantics of BTA and TOP are
described in more detail in Chapter 2. Second, in Chapter 3 the expressiveness of TOP is
explored. Third, Chapter 4 discusses the length of TOP instruction sequences.

Finally, in Chapter 5 the dimensional bias of TOP is investigated by introducing a two-dimensional
interpretation of TOP. Dimensional bias is the fact that the control can move in only one dimen-
sion. Similarly to directional bias, dimensional bias might be a side effect of the natural language
used by the designers of programming languages. On the other hand, the dimensionality might
be related to the fact that these types of languages are based on a Boolean system. Every test
has only two responses, which correlates with going either forwards or backwards in TOP.

7

8

CHAPTER 2

Preliminaries

2.1 Basic Thread Algebra

Most of the text in this section is based on the work of Ponse and van der Zwaag in [8].

Basic Thread Algebra (BTA) is a form of process algebra used to describe the behaviour of
sequential programs. BTA is based on an arbitrary set of basic actions A. On execution each
action yields a Boolean value true or false. The set of all BTA expressions is denoted BTA.

BTA expressions are called threads, which are built with two constants and a single ternary
operator.

• The termination constant is denoted by S ∈ BTA, and describes termination of a program.

• The deadlock or inaction constant is denoted by D ∈ BTA. This behaviour indicates that
the program is in a state where no more actions can be executed.

• The postconditional composition operator P � a � Q : BTA × A × BTA → BTA. This
operator describes the behaviour that executes some action a. If a generates true the
execution continues with P and otherwise with Q.

Additionally there are some convenience notations. These serve to simplify equations but do not
add any functionality.

1. First, there is the action prefix operator a◦P : A×BTA→ BTA. It denotes the behaviour
P � a � P , i.e., the result of a has no influence on the control flow. The action prefix
operator binds stronger than the postconditional composition operator.

2. Second, there is the abbreviation an. It describes that action a is repeated n times, re-
gardless of the Boolean responses. It is defined recursively: a1 = a and an+1 = a ◦ an.

Every thread in BTA has an upper bound to the number of actions it can perform. Thus each
closed thread models finite behaviour which either ends with deadlock or termination. The
approximation operator π(n, P) : N × BTA → BTA binds the number of actions performed by
P to n. The operator is defined as follows:

π(0, P) = D,

π(n+ 1,S) = S,

π(n+ 1,D) = D,

π(n+ 1, P � a�Q) = π(n, P) � a� π(n,Q),

for P,Q ∈ BTA and n ∈ N. Since all threads are finite each thread P has some upper bound
n ∈ N such that for all m ≥ n:

π(m,P) = P.

9

BTA∞ is the complete partial order consisting of all projective sequences:

BTA∞ = {(Pn)n∈N | ∀n ∈ N(Pn ∈ BTA ∧ π(n, Pn+1) = Pn)}.

Hence BTA∞ also contains the infinite threads. In BTA∞ equality is defined componentwise:
(Pn)n∈N = (Qn)n∈N if Pn = Qn for all n ∈ N.

The constants and operators of BTA are defined for BTA∞ by:

D = (D,D, . . .),

S = (D,S,S, . . .),

(Pn)n∈N � a� (Qn)n∈N = (Rn)n∈N with R0 = D and Rn+1 = Pn � a�Qn,

π(n, (Pm)m∈N) = (P0, . . . , Pn−1, Pn, Pn, Pn, . . .).

The set of residual threads of P is defined as Res(P):

P ∈ Res(P),

Q� a�R ∈ Res(P) =⇒ Q ∈ Res(P) ∧R ∈ Res(P).

A thread P is regular if and only if Res(P) is finite. Furthermore, a thread Q is a 0-residual of
thread P if P = Q, and an n+ 1-residual of P if for some a ∈ A, P = P1 � a� P2 and Q is an
n-residual of P1 or P2. A finite linear recursive specification over BTA∞ is a set of equations

xi = ti

for i ∈ I with I some finite index set, variables xi, and all ti terms of the form S, D, or xj�a�xk
with j, k ∈ I. Observe that P is regular if and only if P is the solution of a finite linear recursive
specification.

Threads can be represented graphically by directed graphs. In these illustrations angular brackets
and square brackets represent the postconditional composition operator and the action prefix
operator, respectively. The left descent of a postconditional composition node denotes a true

yield from the execution and the right descent the opposite. Finally, the initial state is indicated
by an arc without a source.

Example 2.1.1. The specification and graphically representation of some thread P1.

P1 = P2 � a� P3

P2 = b ◦ P4

P3 = S

P4 = P1 � c� P5

P5 = D

〈 a 〉

[b] S

〈 c 〉

D

10

2.2 TOP instruction sequences

This section describes the syntax and semantics of Thread-Oriented Program algebra (TOP). It
is briefly introduced in [10] as a variant of C . Like C , TOP does not have a directional bias; all
directional instructions exist in a forward and backward flavour and execution can start at an
arbitrary position in an instruction sequence.

TOP is based on a set of actions A. This set is often kept implicit. For most proofs in this thesis
it assumed that |A| > 1. In equations, elements of A are written as lowercase letters {a, b, . . . }.

The primitives or instructions of TOP can be separated into two types.

1. Directed instructions continue execution in some direction. Instructions with a forward
slash (/) are called forward instructions and instructions with a backward slash (\) back-
ward instructions. As the names imply, forward instructions move control forward and
backward instructions move control backward. In this thesis sequences are written from
left to right, thus forward corresponds with a left-to-right direction and backward with a
right-to-left direction.

• Basic instructions /a and \a for a ∈ A execute action a and move control exactly one
instruction forward or backward, respectively.

• Jump instructions /#k and \#k for k ∈ N+ move control k instructions forward or
backward, respectively. A jump instruction /#k or \#k has a jump counter k and
jumps over k − 1 instructions.

• Test instructions +a and −a for a ∈ A execute action a and depending on the yield
of a move control either forward or backward. The positive test instruction +a moves
control backward if a yields true and forward if a yields false. Execution of the
negative test instruction −a is the same, except that the directions are mirrored.

2. Undirected instructions indicate that no progress will be made after execution. These
instructions do not move control in any way. After these instructions are executed, no
other instruction will ever be executed. These instructions are also unique in the way that
they do not have a mirrored counterpart. Hence they are x undirected.

• The termination instruction ! terminates the execution of the program.

• The abort instruction # indicates that the program can make no progress and models
inaction or deadlock.

These primitives form the set of instructions I. Formally,

I =
⋃
a∈A
{/a, \a,+a,−a} ∪

⋃
k∈N+

{/#k, \#k} ∪ {#, !}.

Instructions of the set I are concatenated to create instruction sequences. The concatenation
operator ; : In × Im → In+m is defined as follows:

I1 = I,
In+1 = {X;u | X ∈ In, u ∈ I1}.

Here concatenation is associative (X;Y);Z = X; (Y ;Z) for any instruction sequences X,Y, Z.
TOP is the union of all sets In for n ∈ N+:

TOP =
⋃

n∈N+

In.

Therefore, TOP contains all finite, non-empty sequences of instructions in I. X is called a
TOP instruction sequence if and only if X ∈ TOP. The length of an instruction sequence X
corresponds to the number of instructions in the sequence, i.e., the length of X ∈ In is n.

11

The semantics of TOP are defined using BTA. For some TOP instruction sequence X each
position i ∈ Z is assigned a thread in BTA∞ using the thread extraction operator | | : TOP×Z→
BTA∞

|X|i =



a ◦ |X|i+1 if σ(X, i) = /a,

a ◦ |X|i−1 if σ(X, i) = \a,
|X|i+k if σ(X, i) = /#k,

|X|i−k if σ(X, i) = \#k,
|X|i−1 � a� |X|i+1 if σ(X, i) = +a,

|X|i+1 � a� |X|i−1 if σ(X, i) = −a,
D if σ(X, i) = #,

S if σ(X, i) = !,

D if σ(X, i) =©,

(2.1)

where a ∈ A, k ∈ N, and σ(X, i) : TOP× Z→ I ∪ {©} is given by

σ(X, i) =

{
ui if 0 < i ≤ n,
© otherwise,

(2.2)

for X = u1, . . . , un.

A TOP instruction sequence X = u1; . . . ;un is said to model a thread P ∈ BTA∞ if there is a
starting position i ∈ {1, . . . , n} for which |X|i = P . Likewise, an instruction sequence X is said
to express the behaviour defined by a linear specification {P1=t1, . . . , Pm=tm} if there is some i
for which |X|i = P1.

Observe that the thread extraction operator allows thread extraction from any position i ∈ Z for
an instruction sequence, including positions outside of the sequence. Contrarily, an instruction
sequence only models a thread if behaviour extraction is started from inside of the sequence
1 ≤ i ≤ n for X = u1; . . . ;un. By this fact the deadlock behaviour (D) can be extracted from
each X ∈ TOP but not all X’s can model a thread defined by only the deadlock behaviour.

Example 2.2.1. Let X = /#1; +a;−b; +c; \#1 then |X|1 = P1 where P1 is defined as follows:

P1 = P1 � a� P2

P2 = P3 � b� P1

P3 = P2 � c� P3

〈 a 〉

〈 b 〉

〈 c 〉

X can not model deadlock since there is no abort instruction and no movement of control outside
of the sequence. However, deadlock can still be extracted from X by extracting from outside of
the sequence: |X|n = D for n ∈ Z and n 6∈ {1, 2, 3, 4, 5}.

In the case that application of these actions results in a loop without actions the extracted thread
is defined as D, e.g., |/#1; \#1|1 = D. Such an occurrence is called a loop without activity.

If Equation 2.1 can be applied infinitely many times from left to right
without ever yielding an action, then the extracted thread is D.

(2.3)

12

Some position j in an instruction sequence X = u1; . . . ;un is directly reachable from position i
if and only if applying Equation 2.1 exactly once to |X|i has an occurrence of |X|j on the right
hand side of the equation. A position j is reachable from i if and only if applying Equation 2.1
arbitrarily many times to |X|i has an occurrence of |X|j on the right hand side of the equation.

Example 2.2.2. The behaviour P1 = |X|5 for X = #;−b; /#3; \#2; \a; +c; /d; !; \e is defined
as follows:

P1 = a ◦ P2

P2 = P3 � b� P4

P3 = P1 � c� P5

P4 = D

P5 = d ◦ P6

P6 = S

[a]

〈 b 〉

〈 c 〉 D

[d]

S

In X the instruction at position 4 (\#2) is directly reachable from the instruction at position
5 (\a), the other way around position 5 is reachable from position 4 but not directly reachable.
Finally, position 9 (\e) is not reachable from any other position.

13

14

CHAPTER 3

On the expressiveness of TOP

In this chapter the expressiveness of TOP is discussed. All regular threads can be modelled by
C instruction sequences and all C instruction sequences model regular threads [3]. Since TOP
is closely related to C , it would be surprising if the same would not hold for TOP. In the first
section of this chapter it is proven that this also holds for TOP. In [10] it is already shown that
this must be the case by presenting behaviour preserving homomorphisms from C to TOP and
vice versa, nevertheless a formal proof is included in this thesis for completeness.

In the second section of this chapter reduced instruction sets of TOP are studied. Analogous to
the findings of Schroevers [10] for C , it is found that jump counters need to be arbitrarily large
in both directions for TOP instruction sequences to model all regular threads.

3.1 Regular threads

In this section it is proven that the threads extracted from a TOP instruction sequence are
regular and that each regular thread can be modelled by a TOP instruction sequence.

Theorem 3.1.1. If X is a TOP instruction sequence and i ∈ Z then |X|i defines a regular
thread.

Proof. Let X = u1; . . . ;un be a TOP instruction sequence. With Equation 2.1 a linear specifica-
tion can be created. All threads extracted from outside of the sequence (σ(X, i) =©) give raise
to a single equation |X|i = D, and thus are regular threads. For each i ∈ {1, . . . , n} an equation
of the form

|X|i = |X|j � a� |X|k or |X|i = |X|j or |X|i = D or |X|i = S

is found. Therefore, a finite set of linear equation can be created

{Pi = |X|i | i ∈ {1, . . . , n}} ∪ {PD = D}.

Any thread extraction on the right side of equations that extracts from outside the sequence is
replaced with D. The remaining extractions |X|j and |X|k on the right side of the equations are
replaced with Pj and Pk respectively. This results in a linear specification.

Conversely, TOP instruction sequences can model the behaviour of all regular threads. Given a
linear specification {Pi=ti | i ∈ {1, . . . , n}} a TOP instruction sequence X = X1; · · · ;Xn of 3n
instructions can be constructed such that |X|3i−1 = Pi.

Xi =


#; !; #; if Pi = S,

#; #; #; if Pi = D,

J (3(j − i) + 1); +a;J (3(k − i)− 1); if Pi = Pj � a� Pk,

(3.1)

15

where J (i) is a relative jump in either the forward or backward direction

J (i) =

{
/#i if i > 0,

\#− i if i < 0.
(3.2)

Example 3.1.1. If Equation 3.1 is applied to the linear specification

{P1=a ◦ P2, P2=P1 � b� P3, P3=S}

an instruction sequence X ∈ TOP is obtained,

X = /#4; +a; /#2; \#2; +b; /#2; #; !; #.

While this is subjectively not the most natural instruction sequence, e.g., the action prefix
operator is modelled as a test instruction instead of a basic instruction, it expresses the behaviour
defined by all equations in the specification for some position in the sequence.

Theorem 3.1.2. Each regular thread is modelled by some TOP instruction sequence.

Proof. Let P be a regular thread. There must be a finite linear specification that defines this
thread and an instruction sequence that models this thread can be found with Equation 3.1-
3.2.

3.2 Reduced instruction sets

In the previous section it was indirectly shown that not all instructions of TOP are required to
model all regular threads. For instance, backward basic instructions or negative test instructions
are not present in Equation 3.1 which clearly can create an instruction sequence for any regular
thread. This observation leads to the question what instructions in TOP are truly required to
model all regular threads. As was stated in Section 2.2, the thread extraction for TOP is defined
so that the abort instruction is not needed to express the deadlock behaviour. Deadlock can also
be expressed by moving control out of the sequence or by a loop without activity. This leads to
an alternative equation which can creates instruction sequences that model all regular threads
without the abort instruction.

Theorem 3.2.1. Let TOP− be defined by allowing only instructions from the set

{+a; /#k; \#k; ! | a ∈ A, k ∈ N+}.

Each regular thread can be modelled by a TOP− instruction sequence.

Proof. Let P be a regular thread defined by the linear specification {Pi=ti | i ∈ {1, . . . , n}}.
Equation 3.1 is adjusted by modelling deadlock with a loop without activity to construct a
TOP− instruction sequence X = X1; · · · ;Xn of 3n instructions such that |X|3i−1 = Pi

Xi =


!; !; ! if Pi = S,

/#1; /#1; \#1 if Pi = D,

J (3(j − i) + 1); +a;J (3(k − i)− 1) if Pi = Pj � a� Pk,

where J (i) is a relative jump in either the forward or backward direction

J (i) =

{
/#i if i > 0,

\#− i if i < 0.

16

All remaining instructions in TOP− seem necessary to model all regular threads. For example,
it can not be done without the positive test instruction (+a for a ∈ A) or the termination
instruction (!) since that would result in the post conditional composition or termination not
being expressible. Furthermore, arbitrarily large jumps in both directions are required to model
all regular threads. Consider the following definition:

Let a ∈ A and n ∈ N+, thread P = Q1 has the (a, n)ω-property if πn(P) = an ◦ D and P has
2n distinct n-residuals {S, Q2, . . . , Q2n}, where each residual Qi also has 2n distinct n-residuals
{Qj | j ∈ {1, . . . , 2n}∧ i 6= j}∪{S}. Lastly, no (n−1)-residuals of distinct Qi’s may be identical.

Threads with this property can only be modelled with arbitrarily large jumps in both directions.
Therefore, such jumps are required to express all regular threads.

Example 3.2.1. Q1 has the (a, 2)ω-property (and so do Q2, Q3 and Q4).

Q1 = QS,2 � a�Q3,4

Q2 = Q1,S � a�Q4,3

Q3 = Q1,2 � a�QS,4

Q4 = Q2,1 � a�Q3,S

Q1,S = Q1 � a� S

QS,2 = S� a�Q2

QS,4 = S� a�Q4

Q3,S = Q3 � a� S

Q1,2 = Q1 � a�Q2

Q2,1 = Q1 � a�Q2

Q3,4 = Q3 � a�Q4

Q4,3 = Q4 � a�Q3

〈 a 〉

〈 a 〉 〈 a 〉

S Q2 Q3 Q4

〈 a 〉

〈 a 〉 〈 a 〉

Q1 S Q4 Q3

〈 a 〉

〈 a 〉 〈 a 〉

Q1 Q2 S Q4

〈 a 〉

〈 a 〉 〈 a 〉

Q2 Q1 Q3 S

Q1 Q2

Q3 Q4

Observe the relation of the threads Q1 to Q4. From each Qi each other Qj is reachable. Yet
there is no possibility for the (n− 1)-residuals for some Qi to overlap with the (n− 1)-residuals
of some other Qj because of the (a, n)ω-property.

Theorem 3.2.2. Let TOP≤k be the subset of TOP that includes all instructions except forward
jump instructions with a jump counter greater than k ∈ N+.

TOP≤k instruction sequences cannot model all regular threads for any k.

Proof. Let P be a regular thread with the (a, n)ω-property where 2n > 2k + 3. P contains the
residual threads Q1, . . . , Q2n (note that Q1 = P and that each Q ∈ {Q1, . . . , Q2n} must have
the (a, n)ω-property). Assume X = u1; . . . ;um is an instruction sequence that models P without
forward jump counters greater than k. There must be an index set I where for each i ∈ I there
must be some j ∈ {1, . . . , 2n} so it is true that |X|i = Qj . Assume that I is chosen so that∑

i∈I i is minimal and all behaviours are represented by some index in I, e.g., exactly one and
only the lowest index for which each Qj can be extracted from X is in I.

Consider I as an ordered sequence of integers i1 < i2 < · · · < in−1 < i2n . The instruction at
position i1 in X is the first instruction in the sequence that allows extraction of some Qj . All
other indices in I extract some other Qj . Note that all other Qj ’s must be n-residuals of Qj . It
is assumed without loss of generality that for i ∈ {i2, . . . , i2n}, i must be reachable from i1. If
this is not the case some indices in I can be replaced by larger indices to make this true.

17

Observe that there are at least |q − p| − 1 instructions between position ip and position iq for
p 6= q. Furthermore, i1 must be able to reach all instructions i2, . . . , i2n with forward jumps since
it is the minimum position in X that extracts some Qj .

Since there are at least k+ 1 instructions between i1 and ij for j > k+ 3 and no forward jumps
greater than k, ij can only be reached with chained forward jumps from i1. Moreover, such a
chain is needed for each j > k + 2 and there are exactly k such j’s. Now some forward jump in
the chain corresponding to the path from i1 to in must be able to jump over at least one jump
instruction of each other chain. This is a contradiction since this jump would need to jump over
at least k instructions.

A similar argument can be made for limiting jump counters of backward jump instructions. This
proves that arbitrarily large jumps in both directions are needed to model all regular threads
with TOP instruction sequences.

18

CHAPTER 4

On the length of TOP instruction
sequences

This chapter explores the relation of the length of TOP instruction sequences and the number
of equations in corresponding linear specifications. In the previous chapter it was shown that for
any X ∈ TOP a regular thread that is modelled by X can be found and vice versa.

First, it is explored how many equations are needed in a linear specification to define the be-
haviour modelled by a TOP instruction sequence of length n. An observation can be made in
relation to the proof of Theorem 3.1.1 where a linear specification is created given a TOP in-
struction sequence. For each instruction at most a single equation is added to the specification,
and in addition an extra equation defining deadlock is added. Evidently the minimum number
of equations should be n+ 1. This would match the result of Redder for PGA in [9].

Second, the opposite is considered. That is to say, the length of a TOP instruction sequence
that expresses the behaviour defined by a linear specifications of n equations. In [3] bounds on
the length of C instruction sequences are formulated. An upper bound for C is found to be 3n.
In other words, instruction sequences of minimally length 3n are required to model all regular
threads of n states. Bouber lowered this upper bound to 3n− b(n+ 2)/3c in [4].

4.1 Instruction sequence to thread

Considering the number of equations needed in a linear specification to define the behaviour
expressed by a TOP instruction sequence of length n it is found that generally each instruction
adds at most a single equation. The only exception occurs in the case that some non-jump
instruction causes implicit deadlock by moving control outside of the instruction sequence. For
instance, take the instruction sequence

X = +a; /b.

This sequence requires three equations to define the extracted behaviour |X|1 = P1.

P1 = P2 � a� P3

P2 = D

P3 = b ◦ P2

While both instructions can move control outside of the sequence the extra equation is required
at most a single time since all occurrences of deadlock can be defined by a single equation.

19

Theorem 4.1.1. The behaviour expressed by a TOP instruction sequence of length n can be
defined by a linear specification of n+ 1 equations.

Proof. The shortest possible instruction sequence X ∈ I1 contains only one instruction. Such
an instruction sequence can give rise to three different linear specifications:

1. {P1=PD � a�PD, PD=D} defines the behaviour expressed by a basic or test instruction.

2. {P1=D} defines the behaviour expressed by a jump or abort instruction.

3. {P1=S} defines the behaviour expressed by a termination instruction.

In each case the set either contains a deadlock state or just a single state. It is assumed without
loss of generality that each specification contains the deadlock state and at most two states.

Each longer instruction sequence can be seen as un+1;X with X = un; . . . ;u1 with the associated
linear specification P = {PD=D, P1=t1, . . . , Pn=tn}. The prepended instruction un+1 requires
at most one extra equation:

{Pn+1=φ(un+1)} ∪ {ψ(Pi=ti) | Pi=ti ∈ E},

where φ() : I → BTA∞

φ(un+1) =



a ◦ Pn if un+1 = /a,

a ◦ PD if un+1 = \a,
Pn−k+1 if un+1 = /#k and n > k,

PD if un+1 = /#k and n ≤ k,
PD if un+1 = \#k,
PD � a� Pn if un+1 = +a,

Pn � a� PD if un+1 = −a,
PD if un+1 = #,

S if un+1 = !,

and ψ is a transformation defined as

ψ(Pi=ti) =



Pi = Pn+1 if ui = \#n+ 1− i,
Pi = a ◦ Pn+1 if i = n and ui = \a,
Pi = Pn+1 � a� Pn−1 if i = n and ui = +a,

Pi = Pn−1 � a� Pn+1 if i = n and ui = −a,
Pi = ti otherwise.

As such the behaviour expressed by an instruction sequence of length n requires a linear specifi-
cation of at most n+ 1 equations to be defined.

4.2 Thread to instruction sequence

Given a linear specification P = {Pi=ti | i ∈ {1, . . . , n}} an instruction sequence X = u1; . . . ;u3n
that expresses the behaviour defined by Pi can be created with Equation 3.1. Since this construct
models each state with 3 instructions, it is clear that an instruction sequence of at most 3n
instructions is needed to express the behaviour defined by a linear specification of n equations.

If an instruction is directly reachable from 2 jump instructions the sequence can be reordered to
use a single jump instruction. In other words, when two jumps target the same instruction it is
possible to combine them to a single jump instruction. On a thread level this only occurs when
two equations in a linear specification have a shared term in the right hand side of the equation.

20

Example 4.2.1. Consider the following linear specification:

P1 = P2 � a� P3

P2 = P4 � b� P3

P3 = P4 � c� P5

P4 = P1 � d� P5

P5 = e ◦ P1

〈 a 〉

〈 b 〉 〈 c 〉

〈 d 〉 [e]

Applying the construct an instruction sequence of length 15 is found:

X = /#4; +a; /#5; /#7; +b; /#2; /#4; +c; /#5; \#8; +d; /#2; \#11; +e; \#13.

Combining the jumps with shared targets a sequence of 11 instructions is obtained. Observe
that even when the two jumps are generated by a single equation the combination is possible by
using a basic instruction.

X = /#3; +a; /#3;−b; /#3; +c; /#4;−d; \#7; \#8; \e

This is not the shortest instruction sequence that expresses the behaviour defined by this spec-
ification, e.g., removing the second last instruction and replacing /#4 with /#3 expresses the
same behaviour.

Let deg−P (Pi) be the number of equations in some linear specification P that have Pi on the right
hand side of the equation. deg−P (Pi) is called the indegree of Pi.

Theorem 4.2.1. The minimum length of TOP instruction sequences required to model all regular
threads of n states is 3n− dn2 e.

Proof. Given the construct of Equation 3.1 it is obvious that each state can be modelled by
three instructions. Essentially if it possible to show that each pair of states can be modelled with
at most five instructions the proof is complete. For a pair including a deadlock or termination
constant this is trivial. Clearly, these states can be modelled by a single instruction and thus a
pair including such a state needs at most four instructions.

Therefore, to find the upper bound only threads without constant states need to be considered.
Given some thread with a linear specification P = {P1=t1, . . . , Pn=tn}. It is shown that when
a state Pi is on the right hand side of two equations in the linear specification an instruction
can be saved. The number of pairs that have this property for some equation Pi is the number
of saved instructions for that equation. Thus the number k of saved instructions for the whole
thread P is

k =
∑

Pi=ti∈P

⌊
deg−P (Pi)

2

⌋
.

21

In order to find the upper bound on needed instructions, k needs to be minimised for an arbitrary
thread. This is done by finding an integer partition of 2n into n parts with the maximum number
of odd parts. This is trivial. For an even number of equations the indegree for each Pi can be
odd. For an odd number of equations one indegree must be even. Therefore,

k =

{
n
2 if n is even,
n+1
2 if n is odd,

or k =
⌈n

2

⌉
.

When including the constant states this still holds. Assume there is a thread of n states with m ∈
{0, 1, 2} constant states. The thread can be coded in 3(n−m)−d(n−m)/2e+m instructions.

It can be shown that this is tight. Consider the regular thread defined by the linear specification
below.

P1 = P2 � a� P3

P2 = P4 � b� P3

P3 = P4 � c� P3

P4 = P4 � d� P1

〈 a 〉

〈 b 〉

〈 c 〉

〈 d 〉

A shortest instruction sequence that models this thread is of length 10 = 3 · 4− d 42e:

X = /#3; +a; /#3;−b; /#4; +c; \#1; /#1; +d; \#8

with |X|2 = P1.

A linear specification P = {Pi=ti | i ∈ {1, . . . , n}} that defines a behaviour that requires at least
3n−

⌈
n
2

⌉
instructions to be expressed can be created for any n ∈ N+ where n 6= 2 as follows:

• For n = 1:
P1 = a ◦ P1

The behaviour defined by this specification requires an instruction sequence of at least 2
instructions to be expressed, e.g., |/a; \#1|1 = P1.

• For n = 3:

P1 = P1 � a� P2

P2 = P2 � b� P3

P3 = P3 � a� P1

A shortest instruction sequence X that expresses this behaviour is

X = /#1; +a; /#1; +b; /#1; +a; \#4.

22

• For n > 2 the linear specification can be defined as P = {P1=t1, . . . , Pn=tn} with

Pi =



P1 � a� Pn if i = 1,

φn(i) if 1 < i and n = 0 mod 4,

φn−1(i) if 1 < i < n and n = 1 mod 4,

ψn(i) if 1 < i and n = 2 mod 4,

ψn−1(i) if 1 < i < n and n = 3 mod 4,

Pn � χ(i) � Pn−1 otherwise,

where φn(), ψn() : N+ → BTA∞ is defined as

φn(i) =


P2d i

3e−1 � χ(i) � P2d i−1
3 e if i < 3n

4 + 1,

P2i−n−1 � χ(i) � P2d i−1
3 e if i = 3n

4 + 1

P2i−n−1 � χ(i) � P2i−n−2 otherwise,

ψn(i) =


P2d i

3e−1 � χ(i) � P2d i−1
3 e if i < 3n−6

4 + 2,

P2d i
3e−1 � χ(i) � P2i−n if i = 3n+6

4 + 2,

P2d i
3e−1 � χ(i) � P2i−n−1 if i = 3n+6

4 + 3,

P2i−n−2 � χ(i) � P2i−n−1 otherwise,

and χ() : N+ → A is defined as

χ(i) =

{
a if i is even,

b otherwise.

Example 4.2.2. The linear specifications {P1=t1, . . . , Pn=tn} for n ∈ {8, 9, 10, 11} created with
the equations above are defined below. Observe that each thread is created by distributing
the arcs in such a way that the number of states with an odd indegree is maximised and that
the indegree of all states is in {1, 2, 3}. Furthermore, all states in the threads defined by these
specifications are unique and reachable from any other state in the specification.

n = 8 n = 9 n = 10 n = 11
P1 = P1 � a� P8

P2 = P1 � a� P2

P3 = P1 � b� P2

P4 = P3 � a� P2

P5 = P3 � b� P4

P6 = P3 � a� P4

P7 = P5 � b� P4

P8 = P7 � a� P6

P1 = P1 � a� P9

P2 = P1 � a� P2

P3 = P1 � b� P2

P4 = P3 � a� P2

P5 = P3 � b� P4

P6 = P3 � a� P4

P7 = P5 � b� P4

P8 = P7 � a� P6

P9 = P9 � b� P8

P1 = P1 � a� P10

P2 = P1 � a� P2

P3 = P1 � b� P2

P4 = P3 � a� P2

P5 = P3 � b� P4

P6 = P3 � a� P4

P7 = P5 � b� P4

P8 = P5 � a� P6

P9 = P5 � b� P7

P10 = P8 � a� P9

P1 = P1 � a� P11

P2 = P1 � a� P2

P3 = P1 � b� P2

P4 = P3 � a� P2

P5 = P3 � b� P4

P6 = P3 � a� P4

P7 = P5 � b� P4

P8 = P5 � a� P6

P9 = P5 � b� P7

P10 = P8 � a� P9

P11 = P10 � b� P11

It can be shown that threads modelled by instruction sequences constructed as described above
require at least 3n − dn/2e instructions. Each state is unique and has two distinct directly
reachable other states. Therefore, each state must be coded with a test instruction. Furthermore,
there is no pair of two states where both states can directly reach the other state in the pair.
Therefore, no two test instructions can be placed directly next to each other.

Now assume X is a minimal instruction sequence that expresses some behaviour as defined above
for some arbitrary n.

23

• At least n instructions must be test instructions. If there are less than n, not all n states
can be modelled by the sequence.

• Exactly bn/2c states are directly reachable from 1 other state. Consequently, these states
require at least 1 jump instruction to be reached from the test instruction that models that
other state.

• Furthermore, there are exactly bn/2c states that are directly reachable from 3 other states.
These require at least 2 jump instructions to be directly reached. One pair of tests can
share a jump instruction, the remaining test needs an additional jump instruction.

• Lastly, (n mod 2) states are directly reachable from 2 other states. This can be modelled
by a single jump instruction.

Summing up the individual instruction counts of each component the following equation is ob-
tained

n+
⌊n

2

⌋
+ 2 ·

⌊n
2

⌋
+ (n mod 2)

which is equal to

3n−
⌈n

2

⌉
.

Thus Theorem 4.2.1 is tight for at least n ∈ {4, 5, 6, . . . }. Proving tightness for n = 1 and n = 3
is trivial, but for n = 2 the bound does not seem reachable.

24

CHAPTER 5

Multidimensional programming languages

In previous chapters programs are considered to be sequences of instructions, i.e., 1-dimensional
objects. Empirically, this might be a result of natural languages, which can also be considered
1-dimensional, e.g., written and spoken text can be represented as a 1-dimensional sequence of
ASCII characters.

Although just because a language can be represented in 1-dimension, this does not implicate that
1-dimension is the natural representation for that language. Turing observed in [11] that the use
of a second dimension is always avoidable and as such not essential for computation. This is
found to be true in this chapter regarding the expressiveness of TOP and TOP2. Nonetheless,
Dershowitz and Dowek observed the relatively naturalness two-dimensional programming delivers
in [6].

Ultimately, 2-dimensionality seems to come natural with human thinking [1]. Consider the illus-
trations used for the behaviour of regular threads. The intuitive nature of these images implies
that behaviour might be easier to interpret in a 2-dimensional setting. Perhaps programming
languages should make use of this feat.

Conceptually 2-dimensional programs are not a new idea. There are several approaches which
can be separated into three main categories:

1. Block based languages,

• Maloney et al. describe a visual programming environment where users can learn
computer programming while working on personally meaningful projects [7]. The
syntax and semantics of programs in the corresponding language are defined by a
visual grammar of block shapes and their combination rules. Programs are made out
of blocks that indicate control structure by their shape and colour.

2. Grid based languages,

• Befunge1 is a grid based language where specific characters change the direction of
control flow. Programs were originally written on a bounded grid (Befunge-93) but in
a later specification2 this bound was removed making the language Turing complete.

• Piet3 is a programming language inspired by Piet Mondrian. The programs are defined
by bitmaps, which are separated into colour blocks, connected pixels with the same
colour. Execution starts with the colour block in the upper left corner. Transition

1C. Pressey. Befunge-93 documentation. https://github.com/catseye/Befunge-93/blob/master/doc/

Befunge-93.markdown, [1993] 2012. Accessed: 2018-05-31
2C. Pressey. Funge-98 specification. https://github.com/catseye/Funge-98/blob/master/doc/funge98.

markdown, [1998] 2018. Accessed: 2018-05-31.
3D. Morgan-Mar. Piet. http://www.dangermouse.net/esoteric/piet.html, 2008. Accessed: 2018-05-31.

25

https://github.com/catseye/Befunge-93/blob/master/doc/Befunge-93.markdown
https://github.com/catseye/Befunge-93/blob/master/doc/Befunge-93.markdown
https://github.com/catseye/Funge-98/blob/master/doc/funge98.markdown
https://github.com/catseye/Funge-98/blob/master/doc/funge98.markdown
http://www.dangermouse.net/esoteric/piet.html

rules between colours define which command to execute and the properties of the
current colour block provide the arguments of executed commands.

3. Graph based languages.

• Denert et al. proposed in [5] the notion that 2-dimensional programs are not written,
but drawn. While the language uses blocks to define programs it is based on graph
rewriting systems. Each block in this language contains a declarative and an oper-
ational section. The declarative part declares the structure of the data type. The
operational part is drawn arbitrarily in 2-dimensional space. Control flow is defined
by rules which are represented by edges.

Since most of these languages run on common hardware they must ultimately be translated
into 1-dimensional machine code, indicating that the extra dimension does indeed not add any
expressiveness to the languages in comparison to more traditional 1-dimensional languages. Fur-
thermore, these language types are actually not that different. Ultimately, blocks are simply
limitations to some grid and each graph could be structured in a gridlike layout.

This chapter introduces a 2-dimensional variant of TOP and studies the impact of this dimen-
sional enrichment on the expressiveness of this language. This variant is called Thread-Program
algebra in 2 dimensions (TOP2).

5.1 Instruction planes

In a 2-dimensional setting programs cannot be represented with instruction sequences, thus the
notion of instruction planes is introduced. The gridlike approach is chosen because it is closely
related to instruction sequences. It allows a direct translation from instruction sequences to
instruction planes, while such a translation would be much more complex for another approach.

Like instruction sequences these instruction planes are constructed with a set of instructions. The
instructions of TOP2 are analogous to the instructions of TOP. For each directed instruction of
TOP there is a counterpart in the second dimension.

• Basic instructions: /a, \a, ↑a, ↓a for a ∈ A,

• Jump instructions: /#k, \#k, ↑#k, ↓#k for k ∈ N+,

• Test instructions: +a,−a, l+a, l−a for a ∈ A.

The undirected instructions are equivalent to those in TOP.

• The termination instruction !,

• The abort instruction #.

Let I2 be the set of all instructions in TOP2. Formally,

I2 =
⋃
a∈A
{/a, \a, ↑a, ↓a,+a,−a, l+a, l−a} ∪

⋃
k∈N+

{/#k, \#k, ↑#k, ↓#k} ∪ {#, !}.

Instruction planes Im,n
2 are defined similar to instruction sequences in 1-dimension. An instruc-

tion plane Im,n
2 can be seen as matrix of order m× n where each element is an instruction.

I1,12 = I2
Im,n+1
2 = {

[
X Y

]
| X ∈ Im,n

2 , Y ∈ Im,1
2 }

Im+1,n
2 = {

[
X

Y

]
| X ∈ Im,n

2 , Y ∈ I1,n2 }

TOP2 is defined as the union over Im,n
2 for all m,n ∈ N+

26

TOP2 =
⋃

n,m∈N+

Im,n
2 .

Unlike instruction sequences, the instructions in instruction planes are not concatenated with
some operator. Instruction planes are denoted with square brackets and instructions must be
vertically and horizontally aligned by their indices. Extraction can be done at an arbitrary
position n,m ∈ Z. Each directed instruction moves the control by adjusting the position in a
single dimension. If control moves outside of the instruction plane deadlock occurs.

The extraction operator of TOP2 is defined as | |i,j : TOP2 × Z× Z→ BTA∞

|X|i,j =



a ◦ |X|i,j+1 if σ2(X, i, j) = /a,

a ◦ |X|i,j−1 if σ2(X, i, j) = \a,
a ◦ |X|i+1,j if σ2(X, i, j) = ↑a,
a ◦ |X|i−1,j if σ2(X, i, j) = ↓a,
|X|i,j+k if σ2(X, i, j) = /#k,

|X|i,j−k if σ2(X, i, j) = \#k,
|X|i+k,j if σ2(X, i, j) = ↑#k,
|X|i−k,j if σ2(X, i, j) = ↓#k,
|X|i,j−1 � a� |X|i,j+1 if σ2(X, i, j) = +a,

|X|i,j+1 � a� |X|i,j−1 if σ2(X, i, j) = −a,
|X|i−1,j � a� |X|i+1,j if σ2(X, i, j) = l+a,
|X|i+1,j � a� |X|i−1,j if σ2(X, i, j) = l−a,
D if σ2(X, i, j) = #,

S if σ2(X, i, j) = !,

D if σ2(X, i, j) =©,

where a ∈ A, k ∈ N+, and σ2(, ,) : TOP2 × Z× Z→ I ∪ {©} is given by

σ2(X, i, j) =

{
ui,j if 0 < i ≤ m and 0 < j ≤ n,
© otherwise,

for X =

u1,1 · · · u1,n
...

. . .
...

um,1 · · · um,n

.

Formally, instruction planes cannot contain empty entries. For convenience cells of the plane
that contain abort instructions that are not reachable from any other instruction are not filled
in. Here reachability is defined as expected, equivalent to the definition for instruction sequences.

27

Example 5.1.1. Let X =

 /a ↓#1
l−c +b !
/d ↑#1

. The behaviour extracted with |X|1,1 = P1,1 is

defined by the linear specification below.

P1,1 = a ◦ P2,2

P2,1 = P1,1 � c� P3,1

P2,2 = P2,1 � b� P2,3

P2,3 = S

P3,1 = d ◦ P2,2

[a]

〈 c 〉

[d]

〈 b 〉

S

Example 5.1.2.

Let X =


↓#1 \#2 +a /#2 ↓#1

↓#1 +a /#1 ↓#1 ↓#1 +a /#1 ↓#1
↓#1 +a ↓#1 ↓#1 +a ↓#1 ↓#1 +a ↓#1 ↓#1 +a ↓#1
/b /#1 /b /b /#1 /b /b /#1 /b /b /#1 !

.

The extracted thread |X|1,6 = P is defined as:

P = Pt � a� Pf

Pt = Ptt � a� Ptf

Pf = Pft � a� Pff

Ptt = P7 � a� P6

Pft = P5 � a� P4

Ptf = P3 � a� P

Pff = P1 � a� P0

Pi = bi ◦ S for i ∈ {0, . . . , 7}

〈 a 〉

〈 a 〉 〈 a 〉

〈 a 〉 〈 a 〉 〈 a 〉 〈 a 〉

[b] [b] [b] [b] [b] [b] [b] S

It is striking how structurally similar an instruction plane can be to the graphical representation
of the thread it models.

5.2 Expressiveness results

It is unsurprising that TOP2 instruction planes must at least be equally expressive as TOP in-
struction sequences since TOP2 has a corresponding instruction plane to all instruction sequences
contained in TOP. Formally, there is an injection from In to I1,n for all n ∈ N+.

Given an instruction sequence X = u1; . . . ;un an instruction plane Y can be constructed with
Y =

[
I(u1) · · · I(un)

]
where I is the identity function.

The opposite is done by concatenating the individual rows of some matrix into a single sequence

28

while transforming 2-dimensional instructions. Given an instruction planeX =

u1,1 · · · u1,n
...

. . .
...

um,1 · · · um,n

.

An instruction sequence Y = Y1,1;Y1,2; . . . ;Ym,n can be constructed as follows:

Yi,j =



#; /a;J (3n− 1) if ui,j = ↑a,
J (−3n+ 1); \a; # if ui,j = ↓a,
J (−3n+ 1); +a;J (3n− 1) if ui,j = l+a,
J (3n+ 1);−a;J (−3n− 1) if ui,j = l−a,
#;J (3kn); # if ui,j = ↑#k,
#;J (−3kn); # if ui,j = ↓#k,
#;J (3k); # if ui,j = /#k and j + k ≤ n,
#; #; # if ui,j = /#k and j + k > n,

#;J (−3k); # if ui,j = \#k and j − k > 0,

#; #; # if ui,j = \#k and j − k ≤ 0,

\#2; I(ui); /#2; otherwise,

where I() : I2 → I is the identity function and J (i) is a relative jump in either the forward or
backward direction:

J (i) =

{
/#i if i > 0,

\#− i if i < 0.

Since TOP sequences can be translated into TOP2 planes and vice versa TOP2 and TOP are
equally expressive. This confirms, at least for TOP and TOP2, that adding another dimension
does not increase expressiveness. Yet the additional dimension does have an effect on the ex-
pressiveness. While arbitrarily large jump counters are required in TOP to express all regular
threads, this is not necessary in TOP2.

Theorem 5.2.1. Let TOP≤22 be the subset of TOP2 that does not contain jump instructions with
a jump counter greater than 2.

TOP≤22 instruction sequences can model all regular threads.

Proof. Given the following construction any regular thread can be modelled in a TOP2 instruc-
tion plane.

X1,i =


! # if Pi = S,

if Pi = D,

J (3(j − i) + 1) +a J (3(k − i)− 1) if Pi = Pj � a� Pk

(5.1)

where J (i) is a relative jump in either the forward or backward direction:

J (i) =

{
/#i if i > 0,

\#− i if i < 0.
(5.2)

Observe that this is almost equivalent to Equation 3.1, i.e., only a single row of the instruction
plane is needed to model all regular threads. Other properties of this construct are that there
are no chained jumps or jumps going outside of the instruction plane. Finally, there are no test
instructions that directly reach another test instruction.

It is clear that any regular thread can be modelled by an instruction plane using only a single
row. To complete the proof it needs to be shown that jumps with a jump counter greater than
2 can be replaced with a path of chained shorter jumps in other rows of the instruction plane.

29

Assume an instruction plane X =
[
u1 . . . un

]
is created by Equation 5.1. An instruction

plane Y =

 Y1,1 . . . Y1,n
...

. . .
...

Y 2
3n,1

. . . Y 2
3n,1

 that uses no jump instructions with a jump counter greater

than 2 can be created with the following equations.

Yi,j =

{
φ(i, j) if i is odd,

ψ(i, j) otherwise,
(5.3)

with φ(,), ψ(,) : N+ × N+ → I2 defined as

φ(i, j) =



{
ui,j if i = 1,

↑#1 if i > 1,
if j = 2 mod 3,

J (i, j, k) if σ(X, 1, j) = /#k,

J (i, j,−k) if σ(X, 1, j) = \#k,
otherwise,

otherwise,

(5.4)

ψ(i, j) =




\#2 if 3j < 2i,

\#1 if 3j = 2i,

/#1 if 3j > 2i,

if j = 0 mod 3,


\#1 if 3j < 2i+ 2,

/#1 if 3j = 2i+ 2,

/#2 if 3j > 2i+ 2,

if j = 1 mod 3,

↑#1 if j = 2 mod 3,

(5.5)

and J (, ,) : N+ × N+ × N+ → I2

J (i, j, k) =


↓#2 if j + k > 3

2 (i+ 1)− 1,

↓#1 if j + k = 3
2 (i+ 1)− 1,

otherwise.

(5.6)

Using Equation 5.1-5.6 every regular thread can be modelled by TOP≤22 instruction plane.

While the previous proof shows a systematic approach to construct an instruction plane without
jump counters greater than 2 for any regular thread, it is not very intuitive. It might be more
instructive to approach the problem in a different manner. It is evident that each regular thread
can be represented as a directed graph in a 2-dimensional image. Now it is not hard to see that
any graph can be discretised into an arbitrarily large but finite instruction plane by replacing
each node with a test instruction and each edge with a series of jump instructions.

Example 5.2.1. Let a thread P1 be defined with the following linear specification,

P1 = P2 � a� P3

P2 = D

P3 = P3 � b� P1

〈 a 〉

D 〈 b 〉

Applying Equations 5.1-5.2 a 1-dimensional instruction plane X ∈ I1,9 is obtained,

X =
[
/#4 +a /#5 # # # /#1 +b \#7

]
.

30

Applying Equations 5.3-5.6 to X gives Y ∈ I6,9,

Y =


↓#2 +a ↓#2 # ↓#2 +b ↓#1
/#1 ↑#1 \#1 \#1 ↑#1 \#2 \#1 ↑#1 \#2
↓#1 ↑#1 ↓#2 ↑#1 ↓#2 ↑#1
/#2 ↑#1 /#1 /#1 ↑#1 \#1 \#1 ↑#1 \#2

↑#1 ↓#1 ↑#1 ↓#1 ↑#1
/#2 ↑#1 /#1 /#2 ↑#1 /#1 /#1 ↑#1 \#1

 ,

where |Y |1,2 = P1. Compared to the graphical representation the behaviour is hard to interpret
from this instruction plane. Informally, the graphical representation could simply be copied into
an instruction plane presuming the plane is large enough.

Y ′ =


↓#1 \#1 \#1 \#1

↓#1 +a ↓#1 ↑#1
↓#1 \#1 /#1 ↓#1 ↑#1
↑#1 +b ↑#1



When considering multidimensional programming languages one might also study a 3-dimensional
variant of TOP. It is easy to see that in this variant jump counters could be limited to 1 while
still being able to represent all regular threads.

Finally, a language with an arbitrary amount of dimensions would probably not need jumps at
all. For each state, control can be moved in a unique dimension.

31

32

CHAPTER 6

Conclusions

Several properties of TOP are studied in this thesis. All TOP instruction sequences model a
regular thread and all regular threads can be modelled by a TOP instruction sequence. Only a
subset of all instructions in TOP is required to model all regular threads but arbitrarily large
jumps in both directions need to be in this set.

In also shown that the behaviour expressed by a TOP instruction sequence of length n can be
defined by a linear specification of n + 1 equations. Conversely, a regular thread specified by
a linear specification of n equations can be expressed by a TOP instruction sequence of length
3n−

⌈
n
2

⌉
.

In Chapter 5 a 2-dimensional alternative to TOP is introduced. TOP2 is equally expressive as
TOP but does not require arbitrarily large jump counters to model all regular threads. TOP2

could be an interesting field of study. It shows many levels of symmetry, e.g., one could find
behaviour preserving automorphisms that mirror and rotate programs in TOP2.

6.1 Acknowledgements

First and foremost, I wish to thank my supervisors, dr. I. Bethke and dr. A. Ponse. They have
been supporting and advising me continuously throughout the works of this thesis. Their advice
and feedback has been paramount in completing this thesis.

Second, I want to thank my family and friends for their unconditional support they have given
me in the past years. Without those closest to me I would not be the person I am today.

33

34

Bibliography

[1] R. Arnheim. Visual thinking. University of California Press, 1969.

[2] J.A. Bergstra and M.E. Loots. Program algebra for component code. Formal Aspects of
Computing, 12(1):1–17, 2000. ISSN 1433-299X. doi: 10.1007/PL00003928. URL https:

//doi.org/10.1007/PL00003928.

[3] J.A. Bergstra and A. Ponse. An instruction sequence semigroup with involutive anti-
automorphisms. Scientific Annals of Computer Science, 19:57–92, 2009. ISSN 1843-8121.

[4] S. Bouber. On the length of instruction sequences for C. 2015. Bachelor thesis: https:

//esc.fnwi.uva.nl/thesis/centraal/files/f881113803.pdf.

[5] E. Denert, R. Franck, and W. Streng. Plan2d — towards a two-dimensional programming
language. In D. Siefkes, editor, Gl-4.Jahrestagung, pages 202–213. Springer Berlin Heidel-
berg, 1975. ISBN 978-3-540-37424-4.

[6] N. Dershowitz and G. Dowek. Universality in two dimensions. Journal of Logic and Com-
putation, 26(1):143–167, 2016.

[7] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The scratch programming
language and environment. Trans. Comput. Educ., 10(4):16:1–16:15, November 2010. ISSN
1946-6226. doi: 10.1145/1868358.1868363. URL http://doi.acm.org/10.1145/1868358.

1868363.

[8] A. Ponse and M.B. van der Zwaag. An introduction to program and thread algebra. In
A. Beckmann, U. Berger, and J.V. Tucker, editors, Logical Approaches to Computational
Barriers: Proceedings CiE 2006, pages 445–458. Springer-Verlag, 2006.

[9] M.G. Redder. On finite projections and program length in thread and program algebra.
2017. Bachelor thesis: https://staff.fnwi.uva.nl/a.ponse/ThesisRedder.pdf.

[10] S.H.P. Schroevers. Expressiveness and extensions of an instruction sequence semigroup.
arXiv preprint arXiv:1003.1572, 2010.

[11] A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(1):230–265, 1937.

35

https://doi.org/10.1007/PL00003928
https://doi.org/10.1007/PL00003928
https://esc.fnwi.uva.nl/thesis/centraal/files/f881113803.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f881113803.pdf
http://doi.acm.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
https://staff.fnwi.uva.nl/a.ponse/ThesisRedder.pdf

	Introduction
	Preliminaries
	Basic Thread Algebra
	TOP instruction sequences

	On the expressiveness of TOP
	Regular threads
	Reduced instruction sets

	On the length of TOP instruction sequences
	Instruction sequence to thread
	Thread to instruction sequence

	Multidimensional programming languages
	Instruction planes
	Expressiveness results

	Conclusions
	Acknowledgements

	Bibliography

