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Motivation for pointfree topology

Traditional topology relies on points and their neighborhoods.

Pointfree topology shifts the focus to frames—generalized lattices
of open sets.

Why?
Ï Avoids reliance on strong assumptions (e.g., Axiom of

Choice).
Ï Provides an algebraic perspective on topology.
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The challenge of non-spatial frames

Classical topology and pointfree topology don’t always align.

The adjunction between spaces and frames works well for some
categories (e.g., sober spaces).

But many frames are non-spatial, leaving a gap between algebra
and topology.

How can we bridge this gap?
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Priestley duality as a bridge

Priestley duality connects algebraic structures to ordered
topological spaces.

Has been extensively applied in lattice theory and related areas.

Restricts to a dual equivalence between the category of frames
and a subcategory of Priestley spaces.

Provides a tool to study spatial as well as non-spatial frames
using order and topology.
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Goals

The goals of this work are the following:

Ï Explore the role of Priestley duality in pointfree topology.
Ï Demonstrate how Priestley duality provides a fresh

perspective on classic results in pointfree topology.
Ï Understand frames through their Priestley spaces.
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Foundations of Priestley duality for frames



Frames

Definition
1. A frame (or locale) is a complete lattice L satisfying

a∧∨
S=∨

{a∧s | s ∈S}

for all a ∈L and S⊆L.

2. A frame homomorphism is a map between frames
preserving finite meets and arbitrary joins.

For each topological space X, the lattice of opens Ω(X) is a frame,
and for each continuous map f : X →Y, the inverse image
f−1 : Ω(Y)→Ω(X) is a frame homomorphism.
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Adjunction

There is a well-known dual adjunction

Top Frm

Ω

pt

where
Ï Top is the category of topological spaces and continuous

maps, and
Ï Frm is the category of frames and frame homomorphisms.

Ï pt maps frames to their spaces of points (completely prime
filters—a filter F such that

∨
S ∈F implies S∩F ̸=∅).
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The units of this adjunction are
Ï λ : X → pt(Ω(X)) defined by λ(x)= {U ∈Ω(X) | x ∈U}.
Ï ϕ : L→Ω(pt(L)) defined by ϕ(a)= {x ∈ pt(L) | a ∈ x}.

λ is an homeomorphism iff each completely prime filter of Ω(X) is
of the form λ(x) for some unique x ∈X. We call such spaces sober.

ϕ is an isomorphism iff a ̸≤ b implies there exists x ∈ pt(L) such
that a ∈ x ̸∋ b. We call such frames spatial.
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The adjunction restricts to a dual equivalence between:
Ï Sob the full subcategory of Top consisting of sober spaces
Ï SFrm the full subcategory of Frm consisting of spatial frames

Top Frm

Sob SFrm

Ω

pt

where
↭ represents a dual equivalence

,→ represents a full subcategory
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Priestley duality

A Priestley space is a compact topological space X equipped with
a partial order ≤ satisfying

x≰ y =⇒ ∃U ∈ClopUp(X) : x ∈U and y ∉U

(ClopUp(X) = clopen upsets of X)

for all x,y ∈X.

A Priestley morphism is a continuous order-preserving map
between Priestley spaces.

Let Pries be the category of Priestley spaces and Priestley
morphisms and DLat the category of bounded distributive
lattices and bounded lattice homomorphisms.

Theorem (Priestley, 1970)
Pries and DLat are dually equivalent.
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Stone duality

Every Priestley space is zero-dimensional and Hausdorff, making
it a Stone space.

Let BA be the category of Boolean algebras and Boolean
homomorphisms and let Stone be the full subcategory of Top
consisting of Stone space.

Theorem (Stone, 1936)
Stone and BA are dually equivalent.

BA is a full subcategory of DLat, and Stone is a full subcategory
of Pries. Thus, Priestley duality generalizes Stone duality:

DLat Pries

BA Stone
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Pultr–Sichler duality

Since Frm is a subcategory of DLat, Priestley duality restricts to
the category of frames.

Definition
1. An L-space (or localic space) is a Priestley space X satisfying

U ∈OpUp(X) =⇒ clU ∈OpUp(X).
(OpUp(X) = open upsets of X)

2. An L-morphism is a Priestley morphism f : X →Y satisfying

f−1(clU)= cl f−1(U)

for each U ∈OpUp(X).

3. Let LPries be the category of L-spaces and L-morphisms.
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Theorem (Pultr–Sichler, 1988)
Priestley duality restricts to LPries and Frm.

LPries and Frm are not full subcategories of Pries and DLat, so
this restriction requires some care.

Key considerations:
Ï The correspondence between bounded lattice morphisms

and Priestley morphisms restricts appropriately to frame
homomorphisms and L-morphisms.

Ï Isomorphisms in Pries (or DLat) between L-spaces (or
frames) remain isomorphisms in LPries (or Frm).
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Embedding points in the Priestley spcae

Let L be a frame and X its Priestley space.

There is an embedding e : pt(L)→X (the identity).

Lemma
Let x ∈X. Then x ∈ pt(L) iff ↓x is clopen.

Definition
1. We call y ∈X a localic point if ↓y is clopen.

2. The localic part locX of X is the collection of localic points.

3. We view locX as a topological space, where open sets are of
the form U∩ locX for U ∈ClopUp(X).

Proposition
pt(L) is homeomorphic to locX.
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Spatiality

Being spatial is exactly having enough points.

This is realized as follows in the Priestley space.

Definition
1. An L-space is L-spatial iff its localic part is dense.

2. Let SLPries be the full subcategory of LPries consisting of
spatial L-spaces.

Theorem
A frame is spatial iff its Priestley space is L-spatial.

Corollary
SLPries and SFrm are dually equivalent.
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LPries and Top

We define a functor Loc : LPries→Top by mapping an L-space X
to its localic part locX,

and an L-morphism f : X →Y is mapped
to its restriction to the localic part Loc(f ) : locX → locY.

Conversely, we define a functor Pr : Top→ LPries by mapping a
topological space X to the Priestley space of its frame of opens.
This can be thought of as the composition e◦pt◦Ω.

These functors restrict to an equivalence:

Theorem
SLPries and Sob are equivalent.
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We thus obtain a new perspective on the classical adjunction of
pointfree topology:

Top LPries Frm

Sob SLPries SFrm

Pr

Loc

18 / 44



Hofmann–Mislove through the lenses of Priestley



Hofmann–Mislove and Priestley

The Hofmann–Mislove theorem is a classic result at the
intersection of topology, lattice theory, and domain theory.

It states that for each sober space Z, the Scott-open filters of the
frame Ω(Z) are (dually) isomorphic to the compact saturated
subsets of Z.

There is a similar result in Priestley duality, which states that
for each Priestley space X, the filters of the lattice ClopUp(X) are
(dually) isomorphic to the closed upsets of X.

If X is the Priestley space of Ω(Z), then Ω(Z)∼=ClopUp(X). Thus,
Priestley’s result restricts to Scott-open filters and special closed
upsets of the Priestley space.
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for each Priestley space X, the filters of the lattice ClopUp(X) are
(dually) isomorphic to the closed upsets of X.

If X is the Priestley space of Ω(Z), then Ω(Z)∼=ClopUp(X). Thus,
Priestley’s result restricts to Scott-open filters and special closed
upsets of the Priestley space.
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Scott upsets

Definition
Let X be an L-space. A Scott upset is a closed upset F such that
minF ⊆ locX.

X

locX

F

minF
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Scott upsets and Scott-open filters

A filter F is Scott-open if
∨

S ∈F implies
∨

T ∈F for some finite
T ⊆S.

Theorem
Let L be a frame and X its Priestley space. For a filter F ⊆L and
its dual closed upset K ⊆X, the following are equivalent:

1. F is Scott-open.

2. If U ⊆X is an open upset, then K ⊆ clU implies K ⊆U.

3. K is a Scott upset.

Corollary
The poset OFilt(L) of Scott-open filters of a frame L is dually
isomorphic to the poset of SUp(X) of Scott upsets of its Priestley
space X.
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Scott upsets and compact saturated sets

Theorem
Let X be an L-space and F ⊆X a closed upset. Then F is a Scott
upset iff F∩ locX is compact saturated.

Corollary
The poset SUp(X) of Scott upsets of an L-space X is isomorphic to
the poset KSat(locX) of compact saturated sets of its localic part.

Corollary (Hofmann–Mislove)
1. Let L be a frame. Then OFilt(L) is dually isomorphic to

KSat(pt(L)).

2. Let X be a sober space. Then OFilt(Ω(X)) is dually
isomorphic to KSat(X).
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The way-below relation and compactness

In a frame L, we define the way-below relation ≪ by

a≪ b ⇐⇒ b≤∨
S implies a≤∨

T for some finite T ⊆S.

An element a is compact if a≪ a. A frame is compact if its top
element is compact.

Definition
Let X be an L-space and F,G closed upsets of X. We write F ≪G
if U ∈OpUp(X) and G⊆ clU implies F ⊆U.

In this language, Scott upsets are precisely closed upsets F such
that F ≪F.

Proposition
Let L be a frame and X its Priestley space.

1. a≪ b iff ϕ(a)≪ϕ(b).

2. a is compact iff ϕ(a) is a Scott upset.

3. L is compact iff minX ⊆ locX.
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Compactness

Definition
An L-space X is L-compact if minX ⊆ locX.

Consider the following categories:
Ï KLPries (KSLPries) the full subcategory of LPries (SLPries)

consisting of compact L-spaces.
Ï KFrm (KSFrm) the full subcategory of Frm (SFrm) consisting

of compact frames.
Ï KSob the full subcategory of Sob consisting of compact sober

spaces.

Theorem
1. KLPries is dually equivalent to KFrm.

2. KSLPries is dually equivalent to KSFrm and equivalent to
KSob.
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A Priestley journey from Hofmann–Lawson to Isbell



Kernels

We now characterize various important classes of frames via
kernels.

Definition
Let X be an L-space.

1. A map ker : ClopUp(X)→OpUp(X) is a kernel if
Ï kerU ⊆U and
Ï U ⊆V implies kerU ⊆ kerV

for all U,V ∈ClopUp(X).

2. A kernel ker is representative if clkerU =U for all
U ∈ClopUp(X).

3. A kernel ker is stable if kerU∩kerV = ker(U∩V) for all
U,V ∈ClopUp(X).

4. A kernel ker is top-preserving if kerX =X.
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In algebra, kernels capture essential structural features.

Similarly, the kernels introduced here serve as representative
pieces that encode different properties of frames within the
language of Priestley spaces.

One of the main contributions of this work is identifying the
appropriate kernels that correspond to key frame properties.
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The continuous kernel

A frame L is continuous if a=∨
{b ∈L | b≪ a}.

Definition
Let X be an L-space. The continuous kernel is defined by

conU =⋃
{V ∈ClopUp(X) |V ≪U}

for U ∈ClopUp(X).

Theorem
A frame is continuous iff con is representative in its Priestley
space.
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Stability

A continuous frame L is stably continuous if a≪ b,c implies
a≪ b∧c for all a,b,c ∈L.

A stably compact frame is a stably continuous frame which is
compact.

Stability (and compactness) can be characterized via the kernel
con.

Theorem
Let L be a frame and X its Priestley space

1. L is stably continuous iff con is representative and stable.

2. L is stably compact iff con is representative, stable, and
top-preserving.
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The algebraic kernel

A frame is algebraic iff every element is the join of compact
elements below it.

An algebraic frame is arithmetic if the binary meet of compact
elements is compact.

An arithmetic frame is coherent if it is compact.

We characterize the Priestley spaces of these classes of frames
via a new kernel.
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Definition
Let X be an L-space. The algebraic kernel is defined by

algU =⋃
{V ∈ClopSUp(X) |V ⊆U}.
(ClopSUp(X) = clopen Scott upsets of X)

for U ∈ClopUp(X).

Theorem
Let L be a frame and X its Priestley space.

1. L is algebraic iff alg is representative.

2. L is arithmetic iff alg is representative and stable.

3. L is coherent iff alg is representative, stable, and
top-preserving.
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Regularity and zero-dimensionality

Regularity (every element is the join of elements well inside it,
think “clU ⊆V”) and zero-dimensionality (every element is the
join of complemented elements, think “clopens”) can be handled
in a similar way.

Definition
Define the following kernels:

1. regular kernel: regU =⋃
{V ∈ClopUp(X) | ↓V ⊆U}

2. zero-dimensional kernel: zerU =⋃
{V ∈ClopBi(X) |V ⊆U}

(ClopBi(X) = clopen bisets of X)

Theorem
1. L is regular iff reg is representative.

2. L is zero-dimensional iff zer is representative.

Note that reg and zer are always stable and top-preserving.
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Comparison of kernels

Recall, every algebraic frame is continuous and every regular
frame is zero-dimensional.

This translates to the following:

Lemma
alg≤ con and zer≤ reg.

(alg≤ con stands for “algU ⊆ conU for all U ∈ClopUp(X),” etc.)

In fact, by comparing these kernels we can identify other
properties of frames.

Lemma
1. X is the Priestley space of a compact frame iff reg≤ con.

2. X is the Priestley space of a compact regular frame iff
reg= con (⇐-direction requires X to be L-spatial).
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Deriving classic dualities

Using our characterizations we can define various subcategories
of LPries.

ConLPries – category of “continuous” L-spaces
KRLPries – category of “compact regular” L-spaces

and various other categories.

Loc restricts as expected to equivalences between these
categories and the corresponding categories of frames and
topological spaces.

This yields alternative proofs of classic dualities such as:
Ï Hofmann–Lawson duality between the categories ConFrm of

continuous frames and LKSob of locally compact sober
spaces.

Ï Isbell duality between the categories KRFrm of compact
regular frames and KHaus of compact Hausdorff spaces.
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SFrm SLPries Sob
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AlgFrm AlgLPries KBSob

StCFrm StCLPries StLKSp

AriFrm AriLPries StKBSp

StKFrm StKLPries StKSp

CohFrm CohLPries Spec

KRFrm KRLPries KHaus

StoneFrm StoneLPries Stone

Hofmann–Lawson

Isbell Stone
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Future work



Conclusion

Priestley duality for frames gives an order-topological
perspective on frames, offering a powerful framework for
studying frames and their associated spaces of points.

The newly introduced categories of Priestley spaces correspond
not only to significant classes of frames but also to key categories
of topological spaces, including compact Hausdorff spaces and
Stone spaces.

This perspective offers new insights into classic duality results in
pointfree topology.
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Spectra of maximal d-elements

Beyond offering a fresh perspective on classic dualities, this
approach also enables the resolution of open problems in
pointfree topology.

For instance, we used Priestley duality for arithmetic frames to
study the d-nucleus and its spectrum of maximal d-elements.
Through this duality, we constructed a counterexample that
resolved an open problem in the literature.
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Study of spectra

The full range of topologies that can be realized as the spectrum
of maximal d-elements remains unclear.

While all Stone spaces can be realized, it is unknown whether
every compact Hausdorff space can arise in this way. However,
by generalizing the d-nucleus to continuous frames, we can
realize all compact Hausdorff spaces.

This direction is currently under investigation, and using this
Priestley framework we expect further insights into this and
other spectra in pointfree topology in the future.
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Priestley space of the assembly frame

The assembly frame of a frame is a construction that plays a key
role in pointfree topology.

It is a long standing problem of Isbell to find an intrinsic
characterization of assembly frames.

Given an L-space X, can we describe the Priestley space of the
assembly frame intrinsically as a construct of X?

A solution would shed some light on Isbell’s problem.
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Thank you!
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