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Pointfree Topology

One of the key ideas in pointfree topology is to study topological
spaces in terms of their lattices of open sets, rather than relying
on their points.

This approach enables reasoning about topological properties
without reference to points (hence the name "pointfree").

However, despite generalizing many topological concepts,
pointfree topology lacks certain intuitive aspects tied to
point-based structures.

Goal of this course: to introduce a framework in which every
frame can be faithfully represented as a topological space,
reconnecting frames with point-based intuition.
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Structure of the course

Background
Pointfree topology
Stone duality and spectral spaces

Priestley duality for frames
Priestley spaces
Esakia duality
Pultr-Sichler duality

Pointfree topology in the language of Priestley spaces
Spatiality
Compactness
Continuity and regularity
Various dualities
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Background:

Pointfree topology
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A little history

Geometry has always been central to mathematics, but it was
only in the 19th century, when the rise of modern analysis, that
precise notions of continuity, convergence, etc. became essential.

Hausdorff introduced the concept of a neighborhood, shifting
focus from a distance-based definitions to spatial relationships.

The modern view of topology further developed through the work
of Kuratowski, Alexandroff, Ursyohn, and Sierpiński.
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A little history

From the 1930s onward, the idea of representing spaces through
lattices of open sets gained traction.

Contributions from Stone, Wallman, McKinsey & Tarski, and
others in the 1930s and 1940s laid early foundations for a
pointfree approach.

Research in Ehresmann’s seminar formally introduced frames as
pointfree spaces.

Following this, Dowker & Papert, Isbell, Banaschewski, and
others expanded the field rapidly.

Johnstone’s book Stone Spaces solidified pointfree topology’s
significance, while Picado & Pultr further advanced the field with
Frames and Locales and Separation in Point-Free Topology.
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Frames

For every topological space X, the lattice O(X) of open sets forms
a frame – a complete lattice where arbitrary joins commute with
meet:

a∧∨
S=∨

{a∧s | s ∈S}.

A frame homomorphism is a map between frames that preserves
arbitrary joins and finite meets. If f : X →Y is a continuous map,
then the inverse image f−1 : O(Y)→O(X) is a frame
homomorphism.

This assignments yields a contravariant functor O: Top→Frm,
where
Frm – the category of frames and frame homomorphisms
Top – the category of topological spaces and continuous maps.
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Points of a frame

Not every frame L can be represented as O(X) for some
topological space; in other words, not all frames are spatial.

However, for every frame L we can associate a topological space
of points.

Lemma
There is a one-to-one correspondence between:

1. frame homomorphisms h : L→ 2,

2. meet-irreducible elements of L, and

3. completely prime filters of L.

Each of these correspond to a point of L.
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The space of points

For a frame L, we define pt(L), the space of points of L, as the
collection of completely prime filters, topologized by open sets of
the form:

ϕ(a)= {x ∈pt(L) | a ∈ x}, a ∈L

For each frame homomorphism h : L→M, the inverse image
gives a continuous map h−1 : pt(M)→pt(L).

This assignment defines a contravariant functor pt : Frm→Top.
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The adjunction

We have the following adjunction between categories:

Top Frm

O

pt

The units of this adjunction are:

Ï λ : X →pt(O(X)), defined by λ(x)= {U ∈O(X) | x ∈U} — in
other words, λ(x) is the completely prime filter of open sets
containing x.

Ï ϕ : L→O(pt(L)), as defined earlier.
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The equivalence

The map λ is an homeomorphism iff each completely prime filter
of O(X) has the form λ(x) for some unique x ∈X. Spaces with this
property are called sober.

ϕ is an isomorphism iff a ̸≤ b implies there exists x ∈pt(L) such
that a ∈ x but b ∉ x. Frames with this property are called spatial.

Thus, the adjunction restricts to an equivalence between:
Sob – full subcategory of sober spaces
SFrm – full subcategory of spatial frames

Top Frm

Sob SFrm

where

⇝
⇝ represents a dual adjunction

↭ represents a dual equivalence

\ represents a subcategory
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Pointless frames

This means we can use the functor pt to represent frames as a
topological spaces.

However, pt can lose significant information about frames.

Example
For a boolean algebra, there is a one-to-one correspondence
between atoms and points. Thus, if L is a a complete atomless
boolean algebra then pt(L)=∅.

In other words, L is a pointless frame.

How to interpret a “space” without points?
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Locales

In short, pt provides a faithful representation only for spatial
frames.

A common alternative is to consider the opposite category Frmop

as a generalization of sober topological spaces. In this approach,
frames are referred to as locales.

This functor Frm→Frmop retains all information, but what
sense of geometric intuition do locales retain, comparable to
topological spaces?

We’ll explore an alternative approach by examining Stone
duality.
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Background:

Stone duality and spectral spaces
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Stone Duality for Boolean Algebras

Stone pursued questions about which algebraic structures can be
represented as topological spaces that ultimately led to his
celebrated duality for Boolean algebras.

A Stone space is defined as a zero-dimensional compact
Hausdorff space.

Stone — the category of Stone spaces and continuous maps
BA — the category of Boolean algebras and Boolean
homomorphisms

Theorem (Stone, 1936)
BA and Stone are dually equivalent.
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Stone Duality for Distributive Lattices

Following this, Stone extended his duality to bounded
distributive lattices. The corresponding spaces, described with
some complexity, are now known as spectral spaces:

Definition (Spectral Spaces)
A spectral space is a topological space X that is sober and
coherent — meaning the compact open sets form a basis that is a
bounded sublattice of O(X).
A spectral map is a continuous map that pull compact open sets
back to compact open sets.

The complexity may be one reason why this duality is not as
widely known as Stone’s Boolean duality.
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Stone Duality for Distributive Lattices

Spec — the category of spectral spaces and spectral maps
DLat — the category of bounded distributive lattices and their
homomorphisms

Theorem (Stone, 1938)
DLat and Spec are dually equivalent.

This yields the following diagram:

DLat Spec

BA Stone
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Spectral spaces as locales

Since frames are bounded distributive lattices satisfying an
additional condition, and frame homomorphisms are specific
bounded lattice homomorphisms, we can refine Stone duality for
distributive lattices to frames.

DLat Spec

Frm ?

This yields a category of spectral spaces and spectral maps that
faithfully represents all frames, including both spatial and
non-spatial frames.

This approach has been explored in work by Schwartz (2013) and
is further detailed in the book Spectral Spaces (2019).
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Priestley duality for frames:

Priestley spaces
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Priestley spaces

In this course, we will consider a different approach.

In the 1970s, Priestley developed a duality for bounded
distributive lattices using compact spaces equipped with a
continuous partial order. These spaces are now called Priestley
spaces.

Priestley spaces have since become a powerful and intuitive tool
in studying distributive lattices and their subcategories.

Esakia further developed a duality for Heyting algebras by
imposing additional restrictions.

Pultr & Sichler initiated the investigation of Priestley spaces of
frames, a topic that has since seen considerable development and
is the subject of this workshop.
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Priestley spaces

Definition
Ï A Priestley space is a compact space with a partial order ≤

satisfying the Priestley separation axiom:

whenever a ̸≤ b there exists a clopen upset U such that
a ∈U ̸∋ b.

(clopen = closed and open)
Ï A Priestley morphism is an continuous, order-preserving

map between Priestley spaces.

Pries – Priestley spaces and Priestley morphisms

Theorem (Priestley, 1970 & 1972)
DLat and Pries are dually equivalent.
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From distributive lattice to Priestley space.

To see how Priestley duality is established, let’s examine the
functors involved.

For D ∈DLat, let X(D) be the collection of prime filters of D
topologized by the subbasis {ϕ(a) | a ∈D}∪ {X(D)\ϕ(b) | b ∈D}.

where ϕ is the Stone map: ϕ(a)= {x ∈X(D) | a ∈ x}

Proposition
(X(D),⊆) is a Priestley space.

Proof.
Let X = (X(D),⊆). We need to show that X satisfies the Priestley
separation axiom and that X is compact. Suppose x,y ∈X with
x ̸⊆ y. Then there exists a ∈ x such that a ∉ y, meaning x ∈ϕ(a) and
y ∉ϕ(a). Since ϕ(a) is a clopen upset, the Priestley separation
axiom holds.
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Proof continued.
To show compactness, we apply Alexander Subbase Theorem. So
assume X =⋃

iϕ(ai)∪⋃
j X \ϕ(bj). Let F be the filter generated by

{bj} and I the ideal generated by {ai}.

If F∩ I =∅, then the Prime Filter Theorem allows us to find x ∈X
with F ⊆ x and I∩x=∅. By assumption, either x ∈ϕ(ai) or
x ∈X \ϕ(bj). If x ∈ϕ(ai), then ai ∈ x, giving x∩ I ̸=∅, a
contradiction. Similarly, if x ∈X \ϕ(bj), then bj ∉ x, but bj ∈F ⊆ x,
also a contradiction.

Hence, F∩ I ̸=∅, implying the existence of c ∈F∩ I, which means
b1 ∧·· ·∧bn ≤ c≤ a1 ∨·· ·∨am. Thus,

ϕ(b1)∩·· ·∩ϕ(bn)⊆ϕ(a1)∪·· ·∪ϕ(am),

and so
X =ϕ(a1)∪·· ·∪ϕ(am)∪X \ϕ(b1)∪·· ·∪X \ϕ(Bn),

proving that X is compact.
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From distributive lattice to Priestley space: morphisms

So for each D ∈DLat, we obtain a Priestley space X(D).

For a bounded lattice homomorphism h : D→D′, we assign the
map X(h)= h−1 : X(D′)→X(D). This is well defined since
bounded lattice homomorphisms pull prime filters back to prime
filters.

Lemma
h−1 is a Priestley morphism.

Proof sketch.
We need to show that it is order-preserving and continuous.
Order-preservation follows since x⊆ y implies h−1(x)⊆ h−1(y). For
continuity, we show ϕ(h(a))= h−1(ϕ(a)).
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From Priestley space to distributive lattice

For X ∈Pries, let D(X)=ClopUp(X) be the collection of clopen
upsets of X.

For a Priestley morphism f : X →Y, let
D(f )= f−1 : ClopUp(Y)→ClopUp(X).

The following results can be verified directly.

Lemma
(D(X),∪,∩,∅,X) is a bounded distributive lattice.

Lemma
D(f ) is a bounded lattice homomorphism.
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Thus, we have contravariant functors X: DLat→Pries and
D: Pries→DLat.

Pries DLat

D

X

The units of this adjunction are:

Ï the Stone map ϕ : D→ D(X(D)), as defined earlier.
Ï λ : X →X(D(X)), defined by λ(x)= {U ∈ClopUp(X) | x ∈U} —

in other words, λ(x) is the prime filter of clopen open sets
containing x.

Lemma
ϕ is an isomorphism and λ is a homeomorphism.

The proof requires the Prime Ideal Theorem, but our hands are
already dirty.
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Priestley and Spectral

This leads us to the following diagram

Pries DLat Spec

It is evident that Pries and Spec are equivalent.

In fact, they are not just equivalent but are actually isomorphic
as categories.

This isomorphism was established by Cornish in 1975.

Let’s explore this isomorphism further.
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Upper topology

The collection of open upsets OpUp(X) in a Priestley space X
form a topology.

Lemma
s(X)= (X,OpUp(X)) is a spectral space

Proof sketch.
To show that s(X) is coherent, note that the compact open sets of
of s(X) are precisely the clopen upsets of X.

To show that s(X) is sober, observe that the closed sets are
exactly the closed downsets, Consequently, the closed irreducible
are precisely the principle downsets of points of X.
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Patch topology

If X is a spectral space, then the patch topology O#(X) is
generated by the subbasis

{U |U ⊆X compact open}∪ {X \V |V ⊆X compact open}

Nerode realized in the 1950s that the patch topology of a spectral
spaces corresponds to the Stone space of its boolean envelope.

The specialization order ≤X of a topological space X is defined by
x≤X y iff x ∈ {y}.

Proposition

pat(X)= (X,O#(X),≤X ) is a Priestley space.
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Pries = Spec

Theorem (Cornish, 1975)
The categories Pries and Spec are isomorphic.

In this sense, spectral spaces and Priestley spaces are one and
the same thing.

The Cornish isomorphism plays an important role in
understanding the relation between the Priestley space X(L) of a
frame L and the space pt(L) of points of L.
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Priestley duality for frames:

Esakia duality
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Frames are complete Heyting algebras

A Heyting algebra is a bounded distributive lattice H equipped
with a binary operation → such that

a∧b≤ c ⇐⇒ a≤ b→ c

for all a,b,c ∈H.

Lemma
D ∈DLat is a frame iff D is a complete Heyting algebra.

Proof.
Homework.
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