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Recap from Last Time

We discussed how the pt functor assigns each frame a space,
though this space may not always serve as an ideal
representative.

To address this, we considered the category of locales, however
this lacks the point-based intuition of traditional topological
spaces.

We then revisited Stone duality for bounded distributive lattices,
noting how it provides a topological representation for the
category of frames through special spectral spaces.

Lastly, we introduced Priestley spaces and their relationship to
spectral spaces. Today, we will continue exploring Priestley
spaces, focusing on the unique properties of Priestley spaces of
frames.
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Priestley duality for frames:

Esakia duality
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Frames are complete Heyting algebras

Lemma
D ∈DLat is a frame iff D is a complete Heyting algebra.

Duality for Heyting algebras was developed by Leo Esakia.

Since Heyting algebras are bounded distributive lattices, the
focus now shifts to identifying the unique properties that
Priestley spaces of Heyting algebras exhibit.
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Implication in ClopUp(X)

Let H be a Heyting algebra and X its Priestley space. Since
H ∼=ClopUp(X), the implication → exists in ClopUp(X).We can
compute:

U →V =∨
{C |U∩C⊆V}

=∨
{C |C⊆V ∪Uc},

so U →V is the largest clopen upset contained in V ∪Uc.

To find the largest upset contained with a subset Z⊆X, we use
↓(Zc)c. Therefore,

U →V = (↓(V ∪Uc)c)c

= (↓(U \V))c

Only the downset operation in this expression does not
inherently preserve clopenness. Thus, for → to exist, the downset
of a clopen must also be clopen.
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Esakia spaces

This condition brings us to the concept of Esakia spaces.

Definition
An Esakia space is a Priestley space X such that ↓U is clopen for
each clopen U ⊆X.

The following is an equivalent characterization.

Lemma

Let X be a Priestley space. Then X is an Esakia space iff U is an
upset for each upset U ⊆X.
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Esakia duality

HA – Heyting algebras and their homomorphisms
Esa – Esakia spaces and their morphisms

Theorem (Esakia, 1974)
HA and Esa are dually equivalent.

However, not every frame homomorphism respects the structure
of a Heyting algebra, to address this, we change these to full
subcategories of DLat and Pries:

HA♥ – Heyting algebras and bounded lattice homomorphisms
Esa♥ – Esakia spaces and Priestley morphisms

Theorem
HA♥ and Esa♥ are dually equivalent.

7 / 31



A picture

We arrive at the following situation.

DLat Pries

HA♥ Esa♥

Our next goal is to add Frm to this diagram.

For this we need to understand completeness in terms of Esakia
spaces.

8 / 31



Arbitrary joins in Priestley spaces

Let D be a bounded distributive lattice and X its Priestley space.

Lemma

Let S⊆D. Then
∨

S exists iff ↑⋃ϕ[S] is clopen.

Recall, that s(X)= (X,OpUp(X)) is a spectral space, where the
compact opens are precisely the clopen upsets. Therefore,
ClopUp(X) forms a basis for s(X), meaning every open upset in a
Priestley space can be expressed union of clopen upsets.

Theorem

D is complete iff for ↑U is clopen for each open upset U ⊆X.
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Extremally order-disconnected spaces

If D is an Heyting algebra, then X is an Esakia space. Hence,⋃
ϕ[S] is already an upset, so ↑ is no longer required.

Corollary

D ∈HA is complete iff U is clopen for each open upset U.

If, additionally, D is a Boolean algebra, the order becomes trivial.

Corollary

D ∈BA is complete iff U is clopen for each open set U.

Spaces satisfying this condition are called extremally
disconnected.

The order-based analogue is known as extremally
order-disconnected.
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Priestley duality for frames:

Pultr-Sichler duality

11 / 31



Priestley spaces of frames

We have collected all the ingredients to cook up the
characteristics of Priestley spaces of frames.

Proposition
D ∈DLat is a frame iff its Priestley space XD is an extremally
order-disconnected Esakia spaces.

Proof.
D is a frame iff its a complete Heyting algebra iff its an
extremally order-disconnected Esakia space.

Thus, Priestley spaces of frames are precisely the extremally
order-disconnected Esakia spaces.

We will use a slightly different definition.
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L-spaces

Lemma
A Priestley space X is an extremally order-disconnected Esakia
space iff U is a clopen upset for each open upset U.

Definition

An L-space is a Priestley space such that U is a clopen upset for
each open upset U.

Compare this to the alternative characterization of Esakia
spaces.

Lemma

Let X be a Priestley space. Then X is an Esakia space iff U is an
upset for each upset U.
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L-morphisms

This covers the topological representation of frames. However,
frame homomorphisms are more specific than bounded lattice
homomorphisms, so we must restrict to a particular kind of
Priestley morphism.

Lemma
Let f : X →X ′ be a Priestley morphism. Then f−1 is a frame
homomorphism iff f−1(U)= f−1(U) for all open upsets U ⊆X ′.

Definition
An L-morphism is a Priestley morphism f : X →X ′ between
L-spaces such that f−1 clU = cl f−1U for all open upsets U of X ′.
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Pultr-Sichler duality

Let LPries be the category of L-spaces and L-morphisms.

Theorem (Pultr-Sichler, 1988)
Frm and LPries are dually equivalent.

Proof.
Consider the functors establishing Priestley duality:
X: DLat→Pries and D: Pries→DLat.

By the previous lemmas, they restrict to Frm and LPries.

Moreover, the units are within Frm and LPries, so the dual
equivalence restricts.

We now have the following diagram:
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DLat Pries

HA♥ Esa♥

Frm LPries



We have identified the category of Priestley spaces that
correspond to frames.

Goal of this course: to introduce a framework in which every
frame can be faithfully represented as a topological space,
reconnecting frames with point-based intuition.

Let’s see what the Priestley space of our example of a pointless
frame looks like.

Example
Let L be the countable complete atomless boolean algebra. Then
pt(L)=∅. But X(L) is (order-)homeomorphic to the Cantor space
with discrete order.

This gives us a lot of points to work with.
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Pointfree topology in the language of Priestley spaces:

Spatiality
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Embedding points in the Priestley spcae

Let L be a frame and X its Priestley space.

There is an embedding e :pt(L)→X. Without loss of generality,
this embedding is identity. In fact, since we defined pt(L) as the
collection of completely prime filters and X as the collection of
prime filters, it is the identity.

We want to understand how pt(L) (with the right topology) is
realized in the Priestley space X.
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Localic points

First, we will characterize localic points (points of the frame) in
the language of Priestley spaces.

Lemma
Let x ∈X. Then x ∈pt(L) iff ↓x is clopen.

Definition
We call y ∈X a localic point if ↓y is clopen.
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Spatiality

Being spatial is exactly having enough points.

This is realized as follows in the Priestley space.

Proposition
L is spatial iff pt(L) is dense in X.

Definition
We call the collection of localic points of X, the localic part of X
and denote it by Y.
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Space of points

Thus, we know topologically which points of an L-space
correspond to points of the frame.

However, the topology of the space of points is not the subspace
topology inherited from the Priestley topology. It is the subspace
topology inherited from the spectral topology on X.

Recall that for each Priestley space X, the spectral topology is the
upper topology, i.e., (X,OpUp(X)).

Lemma

Let U ⊆X be an open upset. Then U∩Y =U∩Y.

Consequently, this subspace topology is exactly

{U∩Y |U ∈ClopUp(X)}

i.e., we only need to consider the clopen upsets.
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Sobrification

Recall that the space of points of a topological space is always
sober. Therefore, for a topological space X the composition
pt(O(X)) is called the sobrification of X.

We can see this also in the language of Priestley spaces. Let Z be
a topological space. Then Z can be mapped into the Priestley
space X =X(O(Z)) via the map λ : Z→pt(O(Z)), i.e., map each
point of Z to the completely prime filter of opens containing that
point.

Then λ[Z] is a subset of the localic part of X, and equality holds
iff Z is sober.
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An example

Let Z be the cofinite topology on the natural numbers.

The (completely) prime filters of Z are exactly the principle ones
and the set of all cofinite subsets.

This extra (completely) prime filter is the sobrification point.
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Pointfree topology in the language of Priestley spaces:

Sublocales
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Sublocales and nuclei

Recall that S⊆L a sublocale of a frame L provided S is closed
under arbitrary meets and a→ s ∈S for all a ∈L and s ∈S.

Sublocales are the pointfree analogue of subspaces of a
topological space.

It is well known that sublocales are in correspondence with
nuclei:

Definition
A nucleus on a frame L is a map j : L→L satisfying

1. a≤ ja

2. jja≤ ja

3. ja∧ jb= j(a∧b)

for all a,b ∈L.
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Nuclear subsets

Let X be an L-space.

Definition
A set N ⊆X is nuclear if it is closed and ↓(U∩N) is clopen for
each clopen U ⊆X.

Theorem
Let X be the L-space of a frame L. There is a one-to-one
correspondence between.

1. Sublocales of L.

2. Nuclei on L.

3. Nuclear subsets of X.

For j : L→L a nucleus, Nj = {x ∈X | ja ∈ x =⇒ a ∈ x} is the
corresponding nuclear subset.
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Nuclear subsets versus sublocales

Let L be a frame and X its L-space.

Nuclear subset of X Sublocale of L

clopen upset open
clopen downset closed

clopen set open ∧ closed
regular closed regular
localic point join-irreducible
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Density

Recall, a sublocale S is dense if 0 ∈S.

Lemma
A nuclear subset N corresponds to a dense sublocale iff
maxX ⊆N.

We call a nuclear N subset cofinal if maxX ⊆N.
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Isbell’s Density Theorem

Theorem
Let X be an L-space. Then maxX is the least cofinal nuclear
subset.

Corollary (Isbell’s Density Theorem)
For a frame L, the Booleanization B(L) is the least dense
sublocale of L.

Proof sketch.
The key is to prove that maxX is the nuclear subset
corresponding to B(L).
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End of Part 2
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