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Structure of the course

Background
Pointfree topology
Stone duality and spectral spaces

Priestley duality for frames
Priestley spaces
Esakia duality
Pultr-Sichler duality

Pointfree topology in the language of Priestley spaces
Spatiality
Sublocales
Compactness and continuity
Continuity and regularity
Various dualities
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Recap from Last Time

We discussed the properties of Priestley spaces of frames.

In particular, we saw that they are exactly the extremally
order-disconnected Esakia spaces.

We then introduced the localic part of an L-space and saw how it
relates to spatiality and the space of points.

Finally, we briefly discussed nuclear subsets and gave an
alternative proof sketch of Isbell’s Density Theorem.
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Pointfree topology in the language of Priestley spaces:

Compactness and continuity

3 / 25



The way-below relation

In a frame L, we define the way-below relation ≪ by

a≪ b ⇐⇒ b≤∨
S implies a≤∨

T for some finite T ⊆S.

Lemma

a≪ b iff ϕ(b)⊆U implies ϕ(a)⊆U for all open upsets U.

Proof.
We will only prove the (⇒)-direction. Suppose a≪ b and ϕ(b)⊆U
for some open upset U. Since U is an open upset, it is of the form
U =⋃

ϕ[S]. Thus, ϕ(b)⊆⋃
ϕ[S], which means b≤∨

S. Therefore,
a≤∨

T for some finite T ⊆S, and hence ϕ(a)⊆⋃
ϕ[T]⊆U.
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Compactness

An element a is compact if a≪ a. A frame is compact if its top
element is compact.

Lemma
Let X be the L-space of L. a ∈L is compact iff minϕ(a)⊆Y.

Proof.
(⇒) Suppose a is compact and let x ∈minϕ(a). We need to show
↓x is clopen, for this it is enough to show that U = (↓x)c is closed.

We will show that U \U =∅, so suppose z ∈U \U. Then z ∈ ↓x, so
z≤ x, which gives x ∈U. Since minϕ(a)\x⊆U and x ∈U, we have
ϕ(a)⊆U. But a is compact, so a≪ a, and hence by the previous
lemma ϕ(a)⊆U. Consequently x ∈U, a contradiction. Hence, U
is closed.
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Lemma (⋆)

Let U ⊆X be an open upset. Then U∩Y =U∩Y.

Proof continued.
(⇐) Suppose minϕ(a)⊆Y. By the previous Lemma, we need to
show ϕ(a)⊆U implies ϕ(a)⊆U for all open upsets U. Thus,
suppose ϕ(a)⊆U. But then

ϕ(a)∩Y ⊆U∩Y =U∩Y ⊆U.

Therefore, ϕ(a)= ↑minϕ(a)= ↑(ϕ(a)∩Y)⊆U, as required.

Proposition
Let L be a frame and X its Priestley space. Then L is compact iff
minX ⊆Y.

Proof.
This follows directly since ϕ(1)=X.
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Special Closed Upsets

Porism
The following are equivalent for closed upsets K ⊆X.

1. minK ⊆Y.

2. K ⊆U implies K ⊆U for all open upsets U.

In Priestley duality, there is a correspondence between filters of
the lattice and closed upsets of the Priestley space:

Theorem (Priestley)
Let L be a bounded distributive lattice and X its Priestley dual.
Then Filt(D) is isomorphic to ClUp(X).

That means there is a collection of filters of L that corresponds to
closed upsets satisfying the properties of the porism.
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Scott upsets

A filter F ⊆L is Scott open if
∨

S ∈F implies
∨

T ∈F for some
finite T ⊆S.

Theorem
Let F ⊆L be a filter and K ⊆X its dual closed upset. Then

F is Scott open ⇐⇒ minK ⊆Y.

Definition
A Scott upset of X is a closed upset K ⊆X such that minK ⊆Y.

Thus, Scott upsets are Scott open filters in the language of
Priestley spaces.
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Scott upsets visually

X

Y

F

minF
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Hofmann-Mislove

Using this correspondence, one can go on and prove the
Hofmann-Mislove Theorem via Priestley duality.

Theorem (Hofmann-Mislove)
Let L be a frame and Y its space of points. Then OFilt(L) is
isomorphic to KSat(Y).

Compare this with the theorem we saw previously:

Theorem (Priestley)
Let L be a bounded distributive lattice and X its Priestley dual.
Then Filt(D) is isomorphic to ClUp(X).

“This theorem smells like Hofmann-Mislove.”

10 / 25



Hofmann-Mislove and Priestley

These two theorems are not only related, they imply each other
in full generality.

Priestley to Hofmann-Mislove
Let L be a frame, X its Priestley space, and Y the localic part.

Filt(L) ClUp(X)

OFilt(L) SUp(X) KSat(Y)

Hofmann-Mislove to Priestley
Let D be a bounded distributive lattice and X its Priestley space.

ClUp(X) KSat(s(X)) OFilt(O(s(X))) Filt(D)
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Pointfree topology in the language of Priestley spaces:

Continuity and regularity
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The con-part of a clopen upset

A frame L is continuous if a=∨
{b ∈L : b≪ a}. We had the

following before:

Lemma

a≪ b iff ϕ(b)⊆U implies ϕ(a)⊆U for all open upsets U.

We can use this lemma to define the way-below relation on clopen
upsets, and then use this for the following definition.

Definition
1. We define a map con: ClopUp(X)→OpUp(X) by

conV =⋃
{W ∈ClopUp(X) |W ≪V}.

2. We say con is dense if conV =V for every V ∈ClopUp(X)

Theorem
L is continuous iff con is dense.
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Stability

A continuous frame L is stably continuous if a≪ b,c implies
a≪ b∧c for all a,b,c ∈L. A stably compact frame is a stably
continuous frame which is compact.

Stability (and compactness) can be characterized via con.

Theorem
L is stably continuous iff con is dense and a ∧-homomorphism.

Lemma
L is compact iff conX =X

Theorem
L is stably compact iff con is dense and (∧,1)-homomorphism.

14 / 25



The alg-part of a clopen upset

On the previous slide we saw that L is compact iff conX =X

This is a consequence of a more general fact:

Lemma
a is compact iff conϕ(a)=ϕ(a).

In other words, the fixpoints of con are the clopen upsets
corresponding to compact elements, but those are exactly the
clopen Scott upsets.

Definition
Define a map alg: ClopUp(X)→OpUp(X) by

alg(U)=⋃
{V ∈ClopSUp(X) |V ⊆U}.
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Algebraic frames

A frame is algebraic iff every element is the join of compact
elements below it.

An algebraic frame is arithmetic if the binary meet of compact
elements is compact

An arithmetic frame is coherent if it is compact.

Theorem
1. L is algebraic iff alg is dense.

2. L is arithmetic iff alg is dense and a ∧-homomorphism.

3. L is coherent iff alg is dense and a (∧,1)-homomorphism.
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Regularity and zero-dimensionality

Regularity and zero-dimensionality can be handled in a similar
way.

Definition
1. reg(U)=⋃

{V ∈ClopUp(X) | ↓V ⊆U}

2. zer(U)=⋃
{V ∈ClopBi(X) |V ⊆U}

where ClopBi(X) is the collection of clopen upsets that are also
downsets.

Theorem
1. L is regular iff reg is dense

2. L is zero-dimensional iff zer is dense.
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Comparison between these maps

We write zer≤ reg if zerU ⊆ regU for all U ∈ClopUp(X).

We have alg≤ con. This corresponds to the fact that algebraic
frames are continuous.

Similarly, zer≤ reg mirrors the fact that zero-dimensional frames
are regular.

A natural question becomes when certain other inequalities hold.
For example, when con≤ reg or vice versa?

We have a partial answer to this:
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Properties

There are other interesting observations. (These are not
necessarily equivalent).

Frame L-space

Spatial Y =X
Compact minX ⊆Y
Regular Y ⊆minX

Compact regular minX =Y
Stone ClopBi(X)=ClopSUp(X)
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Pointfree topology in the language of Priestley spaces:

Various dualities
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LPries to Top

We have that Frm is dually equivalent to LPries and we know
that there is an adjunction between Frm and Top. How do we
realize this adjunction through LPries?

We define a functor Y: LPries→Top by mapping an L-space X
to its localic part Y, and L-morphisms f : X →X ′ are mapped to
their restrictions to their localic parts Y(f ) : Y →Y ′.

Lemma
Let f : X →X ′ be an L-morphism. Then f [Y]⊆Y ′.

Proof.
Let y ∈Y and set U = (↓f (y))c. Then y ∉ f−1(U), so ↓y∩ f−1(U)=∅
since f−1(U) is an upset. But ↓y is open, so y ∉ f−1(U)= f−1(U)
(since f is an L-morphism). Therefore, f (y) ∉U = (↓f (y))c.
Consequently, U =U (if not then f (y) ∈U), so ↓f (y) is open.
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Restricting Y

Using our characterizations we can define various subcategories
of LPries.

ConLPries – category of “continuous” L-spaces
KRLPries – category of “compact regular” L-spaces

and various other categories.

Y restricts as expected to equivalences between these categories
and the corresponding categories of topological spaces.

This yields alternative proofs of classic dualities such as:
Ï The Hofmann-Lawson duality between the category

ConFrm of continuous frames and the category LCSob of
locally compact sober spaces.

Ï The Isbell duality between the category KRFrm of compact
regular frames and the category KHaus of compact
Hausdorff spaces.
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Frm LPries Top

SFrm SLPries Sob

ConFrm ConLPries LCSob

AlgFrm AlgLPries KBSob

SCFrm SCLPries SLCSp

AriFrm AriLPries SKBSp

SKFrm SKLPries SKSp

CohFrm CohLPries Spec

KRFrm KRLPries KHaus

StoneFrm StoneLPries Stone
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Summary

Priestley duality is a bridge between geometric objects (ordered
topological spaces) and algebraic objects (bounded distributive
lattices).

In this sense, Priestley duality for frames gives a geometric
perspective on pointfree topology.

However, this comes at the price of non-constructive principles:
Priestley duality requires the Prime Ideal Theorem (a weaker
form of the axiom of choice).

Nonetheless, this approach to pointfree topology yields several
applications in pointfree topology (as well as other areas of
mathematics).
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