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Stone dualities for boolean algebras and lattices

Stone’s investigation of which algebraic structures can be represented as topological
spaces led to his celebrated duality.

Theorem (Stone, 1936)
The following categories are dually equivalent.
Ï BA—boolean algebras and boolean homomorphisms.
Ï Stone—Stone spaces and continuous maps.

Following this, Stone extended his duality to bounded distributive lattices.

Theorem (Stone, 1938)
The following categories are dually equivalent.
Ï DLat—bounded distributive lattices and bounded lattice homomorphisms.
Ï Spec—spectral spaces and spectral maps.
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Priestley and Spectral

Priestley developed a different duality for bounded distributive lattices using
compact spaces equipped with a continuous partial order.

Theorem (Priestley, 1970)
DLat is dually equivalent to Pries.

Since both Pries and Spec are dually equivalent to DLat, they are equivalent. In
fact, they are not just equivalent but are actually isomorphic as categories.

Theorem (Cornish, 1975)
Spec and Pries are isomorphic.
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Key idea of this talk

Since the category of frames is a subcategory of the category of bounded distributive
lattices, we can refine Priestley duality and Stone duality for distributive lattice to
frames.

This yields subcategories of Pries and Spec that faithfully represent the category of
frames, including both spatial and non-spatial frames.

DLat Pries Spec

Frm LPries LSpec

The investigation of Priestley spaces of frames was initiated by Pultr & Sichler in
1988, and spectral spaces of frames were considered by Schwartz in 2013.

In this session, we will discuss Priestley duality for frames.
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Priestley duality
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Priestley spaces

Definition
A Priestley space is a compact topological space X equipped with a partial order ≤
satisfying the Priestley separation axiom:

x ̸≤ y =⇒ ∃U ∈ClopUp(X) : x ∈U and y ∉U

where ClopUp(X) denotes the collection of clopen (=closed and open) upsets of X.

This is quite a powerful separation property. In fact, every Priestley space a Stone
space.
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Lemma
1. Every closed upset/downset is an intersection of clopen upsets/downsets.

2. Every open upset/downset is a union of clopen upsets/downsets.

Proof.
Let K ∈ClUp(X). We will show that

K =⋂
{U ∈ClopUp(X) |K ⊆U}.

Clearly, the (⊆)-inclusion holds. For the converse, suppose x ∉K. Then y ̸≤ x for each
y ∈K. By PSA, there exists Uy ∈ClopUp(X) with y ∈Uy and x ∉Uy. Then we can cover
K ⊆⋃

Uy. But K is a closed subset of a compact space, so it is compact and hence

K ⊆Uy1 ∪·· ·∪Uyn .

Since finite unions of clopen upsets are clopen upsets, U =Uy1 ∪·· ·∪Uyn ∈ClopUp(X)
with x ∉U.
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Proposition
Every Priestley space is a Stone space.

Proof.
Let X be a Priestley space. We need to show that X is Hausdorff and
zero-dimensional.

To see that X is Hausdorff, let x,y ∈X be distinct. Then either x ̸≤ y or y ̸≤ x. Without
loss we can assume the former. By PSA, there exists U ∈ClopUp(X) with x ∈U and
y ∉U. Then U,Uc are disjoint open sets separating x and y. Thus, X is Hausdorff.

To see that X is zero-dimensional, let U ⊆X be open and x ∈U. By the previous
lemma, {x}= ↑x∩↓x is an intersection of clopen sets, say {x}=⋂

V. But then
⋂

V ⊆U,
and since X is compact, and finite intersection of clopen sets are clopen, we have
x⊆V ⊆U for some clopen V. Therefore, X is zero-dimensional.
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Priestley space of a lattice

For each D ∈DLat, the Priestley space of D is XD = (XD,τ,⊆) where XD is the
collection of prime filters, τ is generated by the subbasis

{ϕ(a) | a ∈D}∪ {XD \ϕ(b) | b ∈D},

where ϕ(a)= {x ∈XD | a ∈ x} (i.e., ϕ is the Stone map).

Lemma
1. XD is a Priestley space.

2. For each h ∈DLat(D,D′), the inverse image h−1 : XD′ →XD is a continuous
order-preserving map.
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Priestley duality

Let Pries be the category of Priestley spaces and continuous order-preserving maps.

Theorem (Priestley, 1970)
DLat is dually equivalent to Pries.

The units of this equivalence are:

Ï ϕ : D→ClopUp(XD) given by ϕ(a)= {x ∈Xd | a ∈ x}.
Ï ϵ : X →XClopUp(X) given by ϵ(x)= {U ∈ClopUp(X) | x ∈U}.
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Theorem (Priestley)
(Filt(D),⊆) is isomorphic to (ClUp(XD),⊇).

Proof.
Consider K: Filt(D)→ClUp(XD) and F: ClUp(XD)→ Filt(D) given by

K(F)=⋂
{ϕ(a) | a ∈F} and F(K)= {a ∈D |K ⊆ϕ(a)}

for F ∈ Filt(D) and K ∈ClUp(XD). It is easy to see that they are well defined. We will
show that F =F(K(F)) and K =K(F(K)).

Let a ∈F. Then K(F)⊆ϕ(a), so a ∈F(K(F)). Conversely, if a ∈F(K(F)) then
K(F)⊆ϕ(a), i.e.,

⋂
{ϕ(b) | b ∈F}⊆ϕ(a). By compactness,

ϕ(b1 ∧·· ·∧bn)=ϕ(b1)∩·· ·∩ϕ(bn)⊆ϕ(a). Therefore b1 ∧·· ·∧bn ≤ a, so a ∈F.

Let x ∈K. Then x ∈ϕ(a) for all a ∈F(K), so x ∈⋂
ϕ(a)=K(F(K)). Conversely, if x ∉K

then there exists ϕ(a) with K ⊆ϕ(a) and x ∉ϕ(a). Hence, a ∈F(K), so K(F(K))⊆ϕ(a).
Consequently, x ∉K(F(K)).
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Priestley duality for frames
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Priestley spaces of complete Heyting algebras

It is well known that frames are complete Heyting algebras.

Priestley duality was restricted to the category of Heyting algebras by Esakia in
1974.

Proposition
Let D ∈DLat and XD its Priestley space.

1. D is a Heyting algebra iff ↑clU = clU for each U ∈OpUp(XD).

2. D is complete iff ↑clU ∈OpUp(XD) for each U ∈OpUp(XD).

3. D is a frame iff clU ∈OpUp(XD) for each U ∈OpUp(XD).

Definition
An L-space is a Priestley space X such that clU ∈OpUp(X) for each U ∈OpUp(X).
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Frame homomorphisms

Frame homomorphisms are bounded lattice homomorphisms that additionally
preserve arbitrary joins. Dually we get:

Lemma
Let L,M ∈Frm and h ∈DLat(L,M). Let XL,XM ∈Pries and f ∈Pries(XM,XL) be the
dual objects. Then h is a frame homomorphism iff f−1(clU)= cl f−1(U) for each
U ∈OpUp(XL).

Proof idea.
This follows from the facts that f−1 ◦ϕ=ϕ◦h and ϕ(

∨
ai)= cl

⋃
ϕ(ai).

Definition (L-morphism)
An L-morphism f : X →X ′ between L-spaces is a continuous order-preserving map
such that f−1(clU)= cl f−1(U) for each U ∈OpUp(X ′).
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Pultr-Sichler duality

Let LPries be the category of L-spaces and L-morphisms.

Theorem (Pultr-Sichler, 1988)
Frm is dually equivalent to LPries.

DLat Pries

Frm LPries
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Completely prime filters

The space of points of a frame L is the collection of completely prime filters. Since
completely prime filters are prime filters they live inside the Priestley space of L.

Lemma
x ∈XL is completely prime iff ↓x is open.

Proof.
(⇒) We need to show that ↓x is open. We will show that U = (↓x)c is closed. Since ↓x
is closed, U is open. Therefore, U =⋃

ϕ(ai). Then ϕ(ai)⊆ (↓x)c, which means ai ∉ x.
Thus,

∨
ai ∉ x since x is completely prime, but ϕ(

∨
ai)= cl

⋃
ϕ(ai)= clU, so x ∉ clU.

Hence, clU ⊆ (↓x)c =U.

(⇐) Suppose
∨

ai ∈ x. Then x ∈ϕ(
∨

ai)= cl
⋃
ϕ(ai). But then ↓x∩⋃

ϕ(ai) ̸=∅, so
x ∈ϕ(ai), and hence ai ∈ x.
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Localic points and spatiality

Definition
A point y ∈X is called localic if ↓y is open. The collection of localic points of X is
denoted by Y and called the localic part.

If XL is the Priestley space of a frame L then the localic part YL can be thought of as
the space of points of L.

Aside: a frame is spatial if it has enough points (= completely prime filters). In the
language of Priestley:

Proposition
L is spatial iff YL is dense in XL.
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Frm LPries Top

SFrm SLPries Sob

ConFrm ConLPries LCSob

AlgFrm AlgLPries KBSob

SCFrm SCLPries SLCSp

AriFrm AriLPries SKBSp

SKFrm SKLPries SKSp

CohFrm CohLPries Spec

KRFrm KRLPries KHaus

StoneFrm StoneLPries Stone
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Scott open filters
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Scott upsets

A filter F ⊆L of a frame is Scott open if
∨

S ∈F implies
∨

T ∈F for some finite T ⊆S.

Proposition
Let F ⊆L be a filter and K ⊆XL its dual closed upset (K =K(F)). Then F is Scott open
iff minK ⊆Y.

Proof.
(⇒) Suppose F is Scott open. We will show minK \Y =∅, so suppose x ∈minK \Y.
Then U = (↓x)c is not closed, so x ∈ clU. Moreover, minK \x⊆ (↓x)c =U ⊆ clU. Hence,
minK ⊆ clU, and therefore K = ↑minK ⊆ clU. But U =⋃

ϕ(ai), so
K ⊆ cl

⋃
ϕ(ai)=ϕ(

∨
ai). Hence,

∨
ai ∈F, and therefore ai ∈F, which gives K ⊆ϕ(ai).

(⇐) Omitted.
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Scott upsets

Definition
A Scott upset of X is a closed upset K ⊆X such that minK ⊆Y.

Recall we have the following theorem:

Theorem (Priestley)
(Filt(L),⊆) is isomorphic to (ClUp(XL),⊇).

By the previous proposition this restricts to Scott open filters and Scott upsets.

Corollary
(SFilt(L),⊆) is isomorphic to (SUp(XL),⊇).
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Scott upsets visually

X

Y

F

minF
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Hofmann-Mislove

Theorem (Hofmann-Mislove)
(SFilt(L),⊆) is isomorphic to (KSat(pt(L)),⊇).

We can prove this theorem using Priestley duality by establishing a connection
between Scott upsets and compact saturated sets of Y.

Theorem
(SUp(X),⊇) is isomorphic to (KSat(Y),⊇).

Proof sketch.
F ∈ SUp(X) 7→F∩Y and K ∈KSat(Y) 7→ ↑K.
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Filt(L) ClUp(XL)

SFilt(L) SUp(XL) KSat(YL)



Admissible filters
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Admissible filters

Recall that nuclei are special maps on a frame that correspond to sublocales.

Definition
Let L be a frame. A nucleus is a map j : L→L satisfying

a≤ ja jja= ja j(a∧b)= ja∧ jb
for all a,b ∈L. Let N(L) be the frame of nuclei on L.

For each j ∈N(L), there is a filter Fj = {a ∈L | ja= 1}. We will call filters of this form
admissible.

Note, each nucleus gives rise to a admissible filter, but there might be multiple
nuclei with the same admissible filter. There is a one-to-one correspondence between
admissible filters and fitted nuclei.
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Nuclear subsets

Nuclei on L correspond to special closed subsets of XL.

Definition
A nuclear subset N ⊆X is a closed set such that ↓(N∩U) is open for each open U ⊆X.
Let N(X) be the coframe of nuclear subsets of X.

The following was proved in a slightly different context.

Theorem (Bezhanishvili & Ghilardi, 2007)
N(L)∼=N(XL)op.
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Localic points are nuclear

Lemma
x ∈X is localic iff {x} is nuclear

Proof.
(⇒) Suppose ↓x is open. Since ↓(U∩ {x} either equals ∅ or ↓x, both of which are open.

(⇐) If {x} is nuclear then ↓(X ∩ {x})= ↓x is open, so x is localic.

Proposition
cl(Z∩Y) ∈N(X) for every Z⊆X.

Proof.
For Ni ∈N(X), we have cl

⋃
Ni ∈N(X). Since cl(Z∩Y)= cl

⋃
y∈Z∩Y {y} we get the result

from the lemma.
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Admissibly in terms of Priestley

Each nuclei gives rise to an admissible filter. We now describe this situation dually.

Lemma
Let j ∈N(L) and Nj ∈N(XL) its corresponding nuclear subset. Then K(Fj)= ↑Nj, i.e.,
the admissible filter Fj corresponds to the closed upset ↑Nj.

Proposition
A filter F ⊆L is admissible iff K(F)= ↑N for some N ∈N(XL).
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Scott open filters are admissible

Theorem
Scott open filters are admissible.

Proof.
If F ⊆L is a Scott open filter, then K =K(F) is a Scott upset, which means minK ⊆Y.
However, cl(K ∩Y) is nuclear, and

K = ↑minK ⊆ ↑cl(K ∩Y)⊆K.

Hence, F is admissible.
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Let L be a frame and XL its Priestley space.

Filter F ⊆L Closed upset K ⊆XL

Prime filter K = ↑x for x ∈XL

Completely prime filter K = ↑y for y ∈YL

Admissible filter K = ↑N for N ∈N(XL)
Scott open filter K = ↑(K ∩YL)



Thanks
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