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Abstract

Pointfree topology provides an alternative approach to classical topology. A fundamen-
tal aspect of this approach is the adjunction between the categories of topological spaces
and frames, which restricts to a dual equivalence between sober spaces and spatial frames,
leaving non-spatial frames outside this equivalence. Priestley duality, originally developed
for bounded distributive lattices, restricts naturally to frames, allowing them to be studied
via their associated Priestley spaces. This perspective is particularly useful when traditional
spatial representations are insufficient.

In this work, we develop a unified framework for characterizing important subcategories
of frames through their Priestley spaces. By establishing equivalences between the cor-
responding categories of Priestley spaces and significant classes of topological spaces, we
systematically derive key results in pointfree topology. In particular, we obtain a new proof
of the Hofmann—Mislove Theorem and demonstrate how it leads to classic dualities, such as
Hofmann—Lawson duality for continuous frames, Isbell duality for compact regular frames,
and Stone dualities for coherent and Stone frames.

A key advantage of this approach is that it unifies algebraic and topological perspec-
tives. While the adjunction between topological spaces and frames fully characterizes spatial
frames, it does not extend to non-spatial ones. Priestley duality fills this gap by associating
frames with dual ordered topological spaces, offering new insights into the interplay between

pointfree and classical topology.
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Introduction

Pointfree topology (see, e.g., [Joh82, PP 12]) offers an alternative to the traditional study
of topology, which typically focuses on points and their neighborhoods. Instead, it empha-
sizes the lattice of open sets as the fundamental object of study. This shift is motivated
both constructively and categorically: reasoning about spaces without explicit reference to
points avoids reliance on strong assumptions such as the Axiom of Choice while enabling an
algebraic approach to topology. The key objects in this framework are frames (also called
locales), which are complete lattices in which arbitrary joins distribute over finite meets.

By replacing the study of point-sets with an analysis of the lattice of open sets, pointfree
topology provides a powerful algebraic perspective on topological spaces. This viewpoint has
led to deep connections between topology, lattice theory, and category theory. A fundamental
aspect of this approach is the relation between the categories Frm of frames and Top of
topological spaces. While the classical adjunction between Top and Frm (see, e.g., [DPG0])
restricts to a dual equivalence (see, e.g., [Joh&2, Sec. II-1]) between spatial frames (those
corresponding to the topology of a space) and sober spaces, many non-spatial frames remain
outside this equivalence, highlighting the distinct algebraic landscape of pointfree topology.

Priestley duality provides a powerful tool for bridging the gap between frames and their
topological counterparts by associating each frame with a Priestley space. This duality,
originally introduced by Priestley [Pri70, Pri72], establishes a categorical equivalence between
bounded distributive lattices and compact ordered spaces satisfying the Priestley separation
axiom.

Beyond its role in duality theory, Priestley duality has been extensively applied in lattice



theory and related areas (see, e.g., [Gv(G24]). A significant development in this area was
initiated by Pultr and Sichler [PS88], who demonstrated that Priestley duality restricts to
a dual equivalence between the category of frames and a subcategory of Priestley spaces,
denoted LPries. The objects of LPries, called L-spaces (so named to reflect their connection to
locales), are Priestley spaces satisfying additional structural constraints. This work laid the
foundation for further research characterizing properties of frames in terms of their Priestley
duals. Subsequent contributions [PS00, BGO7, BGJ13, BGJ16, ABMZ20, ABNMZ21] refined
and extended these results, providing insights into various properties of frames and their
dual spaces. An alternative approach, employing spectral rather than Priestley spaces, was
explored in [Sch13, Sch17a, Sch17b, DST19]. Since the categories of Priestley and spectral
spaces are isomorphic (see, e.g., [Cor75]) this approach provides a different yet equivalent
viewpoint.

Outside of pointfree topology, the study of Priestley spaces of frames has found appli-
cations in other areas, particularly logic. One notable connection arises in the theory of
nuclei, which play a fundamental role in pointfree topology as kernels of frame homomor-
phisms [PP 12 p. 31]. Nuclei also appear in modal logic, modeling the so-called lax modality
[Gol81, FMO97], with applications in various branches of logic [F'M95, AMAPROL, GAOS,
Golll, AP16, BH16]. As demonstrated in [BH19], they provide a unified semantic hierarchy
for intuitionistic logic. Importantly, the structure of the frame of nuclei on a given frame
has been effectively analyzed using the language of Priestley spaces, leading to significant
insights into its complexity (see, e.g., [ABMZ20, ABNZ21]).

This dissertation explores the role of Priestley duality in pointfree topology, particularly

its function as an intermediary between frames and topological spaces. While several classic



results in topology and domain theory have well-established proofs, a central theme of this
work is demonstrating how Priestley duality provides a fresh perspective on these results,
yielding streamlined proofs and new structural insights. We emphasize that Priestley duality
relies on the Prime Ideal Theorem—a choice principle weaker than the full Axiom of Choice.
Therefore, the results in this thesis will depend on it.

A primary focus of this study is understanding frames through their Priestley spaces.
By leveraging Priestley duality, we provide new characterizations of important subcategories
of frames, including spatial, continuous, and algebraic frames, as well as various other sub-
categories. This leads to alternative proofs of key dualities in pointfree topology, such as
Hofmann—Lawson duality for continuous frames [H1.78], Isbell duality for compact regular
frames [Ish72], and Stone dualities for both coherent and Stone frames [Bang9, Jak13].

Beyond categorical dualities, we apply Priestley duality to revisit the Hofmann—Mislove
Theorem [HME&1], a fundamental result at the intersection of domain theory and pointfree
topology (see, e.g., [GHIKXT03]). By reinterpreting this theorem through the lens of Priestley
duality, we establish a framework that not only yields alternative proofs of the dualities
mentioned above, but also provides new insights into the structure of continuous and alge-
braic frames. A central feature of our approach is the characterization of different Priestley
spaces of frames via distinct kernels, which are maps on a Priestley space. This perspective
reinforces the role of Priestley duality as a unifying tool in pointfree topology, demonstrating
its broad applicability in understanding the algebraic and topological aspects of frames.

The new categories of Priestley spaces we introduce correspond not only to important
classes of frames, such as continuous and algebraic frames, but also to significant categories

of topological spaces, including sober spaces, locally compact spaces, compact Hausdorff



spaces, and Stone spaces. This framework offers a unifying perspective on the correspond-
ing dualities, providing new insights and facilitating further connections between pointfree
topology, lattice theory, and topology.

This dissertation is structured as follows. We present a chapter-by-chapter overview,
with each chapter’s introduction providing a more detailed account of its contents.

In Chapter I, we lay the foundation for our study by introducing Priestley duality in the
context of frames. We begin with the classical adjunction between topological spaces and
frames, which restricts to a duality between sober spaces and spatial frames, but does not
account for non-spatial frames. To bridge this gap, we introduce Priestley spaces, which pro-
vide an order-topological perspective on bounded distributive lattices. This duality further
restricts to frames, as in Pultr—Sichler duality, establishing the key framework for interpreting
frames as topological structures.

Chapter II is primarily based on [BM22] and revisits the Hofmann-Mislove Theorem
through this framework. To do this, we introduce the localic part of an L-space, which
corresponds to the space of points of a frame and enables a natural characterization of the
Priestley spaces of spatial frames. We then characterize Scott-open filters in terms of certain
closed upsets of the Priestley space, which we call Scott upsets. Scott upsets are closely
related to compactness, and we use this connection to define Priestley spaces of compact
frames. The relation between Scott upsets and compactness ultimately leads to a proof of
the Hofmann—Mislove Theorem.

In Chapter 111, which is based on [BM 23], we focus on the Priestley spaces of continuous
frames. There are two perspectives on these spaces: they can be viewed as L-spaces with
sufficiently many Scott upsets, or as Priestley spaces equipped with a representative kernel.

4



In this dissertation, we adopt the second viewpoint, as it more clearly highlights connections
to Priestley spaces of other classes of frames. Using this approach, we describe the Priestley
spaces of stably continuous and stably compact frames. At the end of the chapter, we examine
compact regular frames, which are characterized by the coincidence of two otherwise distinct
kernels. The results in this chapter can be understood as a progression from Hofmann—
Lawson duality to Isbell duality, providing alternative proofs of these and other dualities.

Chapter IV is based on [BM25] and follows a structure similar to that of Chapter 11,
but focuses on algebraic frames. In essence, it restricts the categorical framework developed
for continuous frames and L-spaces to their algebraic counterparts, further illustrating the
role of kernels in describing algebraicity and zero-dimensionality. We introduce categories of
Priestley spaces that are equivalent to the categories of spectral and Stone spaces, offering a
new perspective on Priestley duality for bounded distributive lattices and Stone duality for
Boolean algebras.

Finally, Chapter V summarizes the main findings of the dissertation and presents tables
and diagrams illustrating the categories and dualities developed in the previous chapters. In
addition, it includes a table of notations used throughout the dissertation (see Table 4). We

conclude with directions for future work.



Chapter I
Foundations of Priestley duality for
frames

Topology traditionally studies spaces through points and their neighborhoods. In con-
trast, pointfree topology shifts this perspective by treating the lattice of open sets as the
fundamental structure, rather than individual points. This abstraction facilitates a broader
algebraic approach to topology, but might come at the cost of losing some intuitive geometric
interpretations.

A key challenge in pointfree topology is the lack of a faithful representation of spaces
for arbitrary frames. This raises the fundamental question of whether every frame can be
faithfully represented as a topological space.

This chapter introduces Priestley duality for frames, which provides a bridge between
pointfree and classical topology. Priestley duality allows frames to be viewed as topolog-
ical spaces equipped with an additional order structure, thereby restoring the point-based
intuition.

This preliminary chapter lays the foundation for the study of frames through Priestley
duality. We begin in Section 1 with a review of pointfree topology, the adjunction between
topological spaces and frames, and its restriction to a dual equivalence between the categories
of sober spaces and spatial frames. In Section 2, we recall Priestley duality for bounded dis-
tributive lattices, mention several properties of Priestley spaces, and discuss the isomorphism

between the categories of Priestley and spectral spaces. Finally, in Section 3, we examine



how Priestley duality restricts to frames and list several important properties of Priestley

spaces of frames.

1 Topological spaces and frames

In this section, we recall the well-known dual adjunction between the categories of topo-
logical spaces and frames, which forms the foundation of pointfree topology. We review the
functors establishing this adjunction and discuss its restriction to a dual equivalence between
sober spaces and spatial frames. While this section primarily introduces the fundamental
adjunction, additional notions from pointfree topology will be developed in later sections
as they become relevant. This approach allows for a structured development of the theory,
introducing each concept in its natural context.

The results and definitions in this section are well known; for more details we refer to

[Joh82, PP12].

Definition 1.1. A frame is a complete lattice L in which arbitrary joins distribute over

binary meets, meaning that for all S C L and a € L, the frame law holds:

a/\\/S:\/{a/\s|s€S}.

Remark 1.2. Recall (see, e.g., [Joh&2, p. 8]) that a Heyting algebra is a bounded distributive
lattice H equipped with a binary operation — such that (¢ A a) < b iff ¢ < (a — b) for all

a,b,c € H. A lattice is a frame iff it is a complete Heyting algebra (see, e.g., [Joh82, p. 39]).

A fundamental example of a frame is the lattice of open sets Q(X) of any topological

space X. However, not every frame arises this way (see Example 1.11).

Definition 1.3. A frame is spatial if it is isomorphic to Q(X) for some topological space X.

7



Not every space X is uniquely determined by Q(X) (e.g., any indiscrete space has the
same frame of opens). This raises the question of how topological spaces and frames relate
categorically, which we examine through the functors 2 and pt.

A continuous map f: X — Y between topological spaces induces a bounded lattice
homomorphism Q(f) == f~: Q(Y) — Q(X). This homomorphism preserves arbitrary joins
but not necessarily arbitrary meets, because intersections of open sets may fail to be open.

This motivates the following definition:

Definition 1.4. A frame homomorphism is a bounded lattice homomorphism that preserves

arbitrary joins.

The assignment defined by €2 forms a contravariant functor Top — Frm, where Top de-
notes the category of topological spaces and continuous maps, and Frm denotes the category
of frames and frame homomorphisms. Conversely, the functor pt: Frm — Top sends a frame

to its space of points.

Definition 1.5. Let L be a frame.
(1) A point of L is a completely prime filter of L, i.e., a filter F' of L such that if \/ S € F
for some S C L, then SN F # @.
(2) The space of points pt(L) of L is its points equipped with the topology consisting of
the sets

C(a)={zept(L)|acz} for a € L.
The functors €2 and pt establish the fundamental adjunction of pointfree topology:

Theorem 1.6 ([Joh&2, Section II-1]). The pair (2, pt) forms a dual adjunction between Top

and Frm.



To understand the relationship between L and pt(L), it is useful to examine when
pt(©2(X)) recovers the original space X. Every point x in a topological space X defines
a completely prime filter

F,={UeQX) |z eU},

but not every completely prime filter arises this way:.

Example 1.7. In the cofinite topology on an infinite set X, the collection of all cofinite sets

forms a completely prime filter, yet it is not of the form F, for any = € X.

Definition 1.8. A space X is sober if every irreducible closed subset (one that cannot be

written as the union of two proper closed subsets) is the closure of a unique singleton.

Sobriety ensures that X is uniquely determined by ©Q(X), and that pt(£2(X)) is homeo-
morphic to X. In particular, this means that every completely prime filter of Q(X) is of the

form F), for some unique =z € X.

Remark 1.9. In a Hausdorff space, the only irreducible closed sets are singletons. Conse-

quently, every Hausdorff space is sober (see, e.g., [Joh&82, p. 43]).

By restricting the adjunction to sober spaces and spatial frames, we obtain an equivalence
of categories. Let Sob denote the full subcategory of Top consisting of sober spaces, and let

SFrm denote the full subcategory of Frm consisting of spatial frames.

Theorem 1.10 (see, e.g., [Joh&2, p. 44]). Sob is dually equivalent to SFrm.

We thus arrive at Fig. 1, where A «~~- B indicates that A and B are dually equivalent,

A 722222 B that there is a dual adjunction between A and B, and A «——— B that A is



a full subcategory of B. The numbers next to the arrows denote where the corresponding

adjunctions or equivalences are stated.

1.6
Top 0202202 Frm

Sob e~ ts SFrm

Figure 1: The fundamental adjunction between topological spaces and frames.

Theorem 1.10 demonstrates that frames faithfully generalize sober spaces. This high-
lights the role of completely prime filters in distinguishing spatial frames and sober spaces.

However, some frames lack completely prime filters entirely, as we now illustrate.

Example 1.11 (see, e.g., [PP 12, p. 19]). Consider a complete atomless Boolean algebra B,
such as the lattice of regular open sets of the real line. Since every complete Boolean algebra
is a frame, B is a frame. However, completely prime filters in B correspond to atoms, and
because B is atomless, it has no completely prime filters, meaning that pt(B) = &. This

shows that B is as far from being spatial as possible.

This example indicates that frames can behave significantly differently from classical
topological spaces. Nonetheless, frames remain amenable to topological methods, partic-
ularly through Priestley duality, which provides a powerful framework for interpreting all

frames, even those with no points at all.

2 Priestley duality for distributive lattices

The adjunction between topological spaces and frames provides a foundation for pointfree
topology, but it does not fully capture the structure of frames from a topological perspective.

10



A different duality is needed to bridge the gap. In this section, we introduce Priestley duality,
which establishes a connection between bounded distributive lattices and certain ordered
topological spaces known as Priestley spaces.

The definition and results in this section are well known; for more details we refer to,
e.g., [Prigd, GvG24]. Recall that an upset of a partially ordered set (X, <) is a subset Z
such that

Z =17 ={rx € X |z<xfor some z € Z}.

Downsets and | Z are defined analogously.

Definition 2.1. A Priestley space is a compact topological space X equipped with a partial

order < satisfying the Priestley separation azxiom:

@ £ y implies that there exists a clopen upset U such that z € U and y ¢ U (I.1)

for all z,y € X.

To each bounded distributive lattice, we assign the Priestley space consisting of its prime

filters:

Definition 2.2. Let L be a bounded distributive lattice. The Priestley space X'(L) of L is
the collection of its prime filters equipped with:

e the topology generated by the subbasis

{vla) [a e LY U{X(L)\ ¢(b) [ b€ L}

where ¢(a) = {z € X'(L) | a € z} for each a € L, and

e the partial order given by the subset inclusion C.

11



This construction ensures that X (L) is a Priestley space for each bounded distributive lat-
tice L. A bounded lattice homomorphism h: L — M induces a continuous order-preserving

map h~t: X'(M) — X (L). This motivates the following definition:

Definition 2.3. A Priestley morphism is a continuous order-preserving map f: X — Y

between Priestley spaces, meaning that = < y implies f(z) < f(y) for all z,y € X.

The category Pries consists of Priestley spaces and Priestley morphisms, while the cat-
egory DLat consists of bounded distributive lattices and bounded lattice homomorphisms.

Priestley duality is obtained via the following functors:

e The functor X': DLat — Pries maps each bounded distributive lattice to its Priest-
ley space and sends a bounded lattice homomorphism h: L. — M to the Priestley
morphism h~': (M) — XC(L).

e The functor ClopUp: Pries — DLat assigns to each Priestley space X its lattice of
clopen upsets ClopUp(X) and sends a Priestley morphism f: X — Y to the bounded

lattice homomorphism f~!: ClopUp(Y) — ClopUp(X).
Theorem 2.4 (Priestley duality; [Pri70, Pri72]). Pries is dually equivalent to DLat.

Remark 2.5. One of the units of this dual equivalence is ¢: L — ClopUp(X'(L)). This
ensures that for each bounded lattice homomorphism h: L — M the following diagram

commutes:
L —%— ClopUp(X (L))

hl l@lopUp X (h)

M —— ClopUp(X'(M))
In particular, if f = X'(h) then f~(¢(a)) = p(h(a)) for each a € L. This will be used in

Chapter I11.

12



The Priestley separation axiom is a strong separation property, implying that every

Priestley space is zero-dimensional and Hausdorff, making it a Stone space.

Definition 2.6. A Stone space is a zero-dimensional compact Hausdorff space.

Let BA be the category of Boolean algebras with their homomorphisms and let Stone be
the full subcategory of Top consisting of Stone spaces. Stone duality, which establishes an
equivalence between BA and Stone, arises as a special case of Priestley duality. Specifically,
if we consider a Boolean algebra B as a distributive lattice where every element is comple-
mented, its Priestley space X (B) has a trivial order, reducing it to a Stone space. Thus,

Priestley duality generalizes Stone duality by incorporating order structure.

Theorem 2.7 (Stone duality; [Sto36]). Stone is dually equivalent to BA.

We can view Stone as the full subcategory of Pries of Priestley spaces where the order is
trivial. This yields the relationships shown in Fig. 2.

Pries ¢~iew~s DlLat

Stone ¢~y BA

Figure 2: Priestley duality as an extension of Stone duality.

We now briefly list some known properties of Priestley spaces that will be used throughout
this thesis. In a Stone space, the collection of clopen sets forms a basis (as it is zero-
dimensional). A similar role is played by the clopen upsets and downsets of a Priestley
space. This is made precise by the following result. We denote the clopen downsets of X by
ClopDn(X).

13



Lemma 2.8 (see, e.g., [PS88, Prop. 1.3]). Let X be a Priestley space.
(1) ClopUp(X) U ClopDn(X) forms a subbasis for X.
(2) Every open upset (resp. downset) is a union of clopen upsets (resp. downsets).

(3) Every closed upset (resp. downset) is an intersection of clopen upsets (resp. downsets).

Closed subsets of a Priestley space interact well with order, as seen below. For a poset

7, we write min Z and max Z for the minimal and maximal elements of Z, respectively.

Lemma 2.9 (see, e.g., [Pri81, Prop. 2.6]). Let X be a Priestley space and let F C X be
closed.

(1) Both TF and [F are closed.

(2) Both min F' and max F' are nonempty. In fact, for every x € F there ezist y € min F

and z € max F such that y < x < z. Consequently, if F' is a closed upset, then

F=1minF, and if F is a closed downset, then F' = | max F.

By Priestley duality, points of a Priestley space can be identified with prime filters of
its lattice of clopen upsets. This leads to the following result, which is used in Section 4 to

extend maps between subsets of Priestley spaces to the entire space.

Proposition 2.10 (see, e.g., [GvG24, Lem. 3.25]). Let X be a Priestley space. If P is a

prime filter of ClopUp(X), then (P = Tz for a unique x € X.

We now highlight another important consequence of Priestley duality: the correspondence
between filters of a lattice and closed upsets of its Priestley space. This will play an important
role in Section 6.

Let Filt(L) denote the collection of filters of a lattice L and ClUp(X) the collection of
closed upsets of a Priestley space X. We view both as posets under inclusion.

14



Theorem 2.11 (see, e.g., [P1184]). Let L be a bounded distributive lattice and X its Priestley
space. Filt(L) is dually isomorphic to ClUp(X). This isomorphism is established by the

maps:

F— Kp:= ﬂ{gp(a) |a € F} for F € Filt(L),

K—{aeL|KCya)} for K € ClUp(X).

We conclude this section by recalling the well-known connection between Priestley spaces
and spectral spaces. In addition to Priestley duality, there exists another duality for bounded

distributive lattices, originally developed by Stone using spectral spaces.

Definition 2.12 (see, e.g., [Hoc69, p. 43]). A spectral space is a compact sober space satis-
fying the following properties:
(1) It is compactly based, meaning that it has a basis of compact open sets.

(2) The binary intersection of two compact open sets is compact.
Remark 2.13. The term compactly based follows the terminology used in [Frn09].

Definition 2.14 (see, e.g., [Joh&2, p. 64]). A continuous map f: X — Y is coherent if

f~YU) is compact for each compact open U C Y.
Let Spec be the category of spectral spaces and coherent maps.

Remark 2.15. Continuous maps between Stone spaces are coherent since the compact open
sets of a Stone space are exactly the clopen sets. Thus, Stone is a full subcategory of Spec

(see, e.g., [Joh82, p. 71]).

Theorem 2.16 ([Sto38]). DLat is dually equivalent to Spec.

15



As a consequence of Theorems 2.4 and 2.16, Spec is equivalent to Pries. In fact, these

categories are isomorphic:

Theorem 2.17 ([Cor75]). Pries and Spec are isomorphic.

Remark 2.18. We briefly outline the isomorphism of Theorem 2.17. The specialization
preorder < on a topological space X is defined by x < y iff z € cl{y}, where cl is the
topological closure. The preorder is a partial order iff X is Tj. For spectral spaces, the patch
topology is generated by compact open sets and their complements.

A spectral space is mapped to a Priestley space by equipping its carrier with the patch
topology and the specialization order. Conversely, a Priestley space is mapped to a spectral
space by equipping its carrier with the upper topology, which consists of the open upsets.
Since these topologies are used throughout this thesis, we introduce notation: for a Priestley
space X, we denote its topology (i.e., the patch topology of the corresponding spectral space)
by m or mx, and its upper topology (i.e., the topology of the corresponding spectral space)

by 7 or 7x.

3 Restriction of Priestley duality to frames: Pultr—Sichler duality

Priestley duality provides a complete characterization of bounded distributive lattices
in terms of ordered topological spaces. As frames form a subclass of bounded distributive
lattices, they naturally fall within this framework. This section characterizes the Priestley
spaces corresponding to frames.

For a Priestley space X, let OpUp(X) denote the collection of open upsets of X.

16



Definition 3.1 (L-spaces).

(1) A localic space, or simply an L-space, is a Priestley space X such that

U € OpUp(X) implies clU € OpUp(X). (I.2)

(2) An L-morphism is a Priestley morphism f: X — Y between L-spaces such that
Y U) =cl f7YU) for every U € OpUp(Y).

(3) Let LPries be the category of L-spaces and L-morphisms.

The identity map and compositions of L-morphisms are L-morphisms, ensuring that
LPries forms a category.

Priestley duality restricts to the categories LPries and Frm.

Theorem 3.2 (Pultr—Sichler duality; [PS88]). LPries is dually equivalent to Frm.

Remark 3.3. By Theorem 2.17, there exists a category of spectral spaces isomorphic to

LPries. This category was investigated in [Sch13, Schl7a, Schl7b] (see also [DST19]).

We will frequently rely on the following conditions satisfied by L-spaces:

Lemma 3.4 (see, e.g., [PS88, Sec. 2] and [Fsal9, Thm. 3.12]). Suppose X is an L-space.
(1) If F C X is clopen, then [F is clopen.
(2) If U C X is open, then LU is open.
(3) If U C X is an upset, then clU is an upset.

(4) Tcl F = cltF for each F C X.

Remark 3.5. For every Priestley space, the conditions in Lemma 3.4 are equivalent. Priest-

ley spaces satisfying any of these conditions are known as Esakia spaces (see, e.g., [Fsal9]).
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Esakia spaces are the duals of Heyting algebras [['sa74]. That L-spaces satisfy these condi-
tions reflects the fact that frames are complete Heyting algebras (see Remark 1.2). Moreover,

Esakia spaces satisfying (1.2) are precisely the dual spaces of complete Heyting algebras.

Since the clopen upsets of an L-space form a frame, all joins exist. Throughout this

thesis, we will use the following lemma to compute joins:

Lemma 3.6 (see, e.g., [BB08, Lem 2.3|). Let L be a frame, X its Priestley space, and S C L.

Then
e (V' 8) =alJels] (L3)

In the remainder of this thesis, we will utilize Pultr—Sichler duality to study frames from
the perspective of Priestley spaces. In particular, we will restrict Pultr—Sichler duality to

several important categories of frames and characterize their Priestley spaces.
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Chapter 11
Hotmann—Mislove through the lenses
of Priestley

The Hofmann-Mislove Theorem [HM&1] establishes a fundamental connection between
topological structures and domain theory (see [GHICT03, pp. 144-150]). Given a sober space
X and its frame of opens L = Q(X), the theorem states that the poset OFilt(L) of Scott-
open filters of L is isomorphic to the poset KSat(X) of compact saturated subsets of X.
This, in particular, implies that KSat(X) is a domain for a locally compact sober space X
(since OFilt(L) is a domain for a locally compact space; see [GHIX 03, p. 145]). Since its
original proof in 1981, the theorem has been revisited in various settings, with Keimel and
Paseka’s proof [[KXP94] considered one of the most direct and widely used.

A structurally similar result exists in Priestley duality (see Theorem 2.11), where the
poset of filters of a bounded distributive lattice corresponds to the poset of closed upsets of
the Priestley space. A close look at the two proofs reveals striking similarities. Indeed, it
was pointed out in [BBGK 10, Rem. 6.4] that the two results are equivalent in the setting of
spectral spaces.

In this chapter we demonstrate that Priestley duality for frames provides a natural frame-
work for proving the Hofmann—Mislove Theorem. By interpreting Scott-open filters in terms
of closed upsets of the Priestley space, we establish a more general version of the theorem.
Specifically, we will prove that OFilt(L) is isomorphic to KSat(pt(L)) for an arbitrary frame

L by showing that OFilt(L) corresponds to the poset of Scott upsets of the Priestley space
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of L. The Hofmann—Mislove Theorem is an immediate consequence.

This chapter is organized as follows. Section 4 develops the notion of the localic part of
an L-space, providing a Priestley perspective on spatial frames and revisiting the equivalence
of Theorem 1.10. Section 5 builds on this by analyzing compact frames, compact elements,
and the way-below relation in terms of Priestley spaces, leading naturally to the concept
of Scott upsets. These upsets turn out to characterize Scott-open filters in the language of
Priestley spaces, and this correspondence is used in Section 6 to give a Priestley analogue of

the Hofmann—Mislove Theorem, ultimately yielding a new proof of the theorem.

4 Priestley spaces of spatial frames: the localic part

This section develops the Priestley perspective on spatial frames, offering an alternative
formulation of the well-known duality between Sob and SFrm (see Theorem 1.10). By shifting
the focus to Priestley spaces, we recast spatiality as a purely topological property: the density
of a distinguished subset.

Let L be a frame and X its Priestley space. Since completely prime filters form a
distinguished subset of prime filters, the space of points pt(L) embeds naturally into the
Priestley space X of L. The following provides a purely order-topological characterization

for recognizing these points.

Lemma 4.1 ([PS00, Prop. 2.9]; see also [BGJ16, Lem. 5.1)). Let L be a frame and X the

Priestley space of L. Then y € X is a completely prime filter iff ly is clopen.

This leads to a key definition: the localic points of an L-space, which correspond to

completely prime filters in the dual frame. These points and their collection will play a
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central role in this thesis.

Definition 4.2. Let X be an L-space.
(1) A localic point of X is a point y € X such that |y is clopen.

(2) The localic part loc X of X is its collection of localic points.

Remark 4.3. Various terminologies exist for the elements of loc X. They are called L-points
in [PS00] and nuclear points in [ABMZ20]. We adopt the term localic points, following

[Sch13], as it naturally reflects their role as the points of the corresponding locale.

The localic part of an L-space is crucial for understanding spatiality through Priestley
duality. It provides a way to interpret spatiality of a frame in terms of a density condition
on its Priestley dual, which will be formalized in the next theorem. The equivalence (1)< (2)

is proved in [ABMZ20, Thm. 5.5] (see also [PS00, Par. 2.11]).

Theorem 4.4. For a frame L and its Priestley space X, the following are equivalent:
(1) L is spatial.
(2) loc X is dense in X.

(3) UNlocX is dense in U for each U € ClopUp(X).

Proof. (1)<(2) is known (see above).
(2)<(3) If loc X is dense in X, then UNloc X is dense in U for each open subset U of X.

The other implication follows immediately because X € ClopUp(X). ]

Theorem 4.4 formalizes the idea that having “enough points” in the frame corresponds
to having “enough localic points” in the Priestley dual. The inclusion of the third condition
of Theorem 4.4 will become more illustrative as we explore different density conditions that
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characterize other classes of frames. Many important frame properties can be understood
through variations of this condition by identifying various “kernels” of clopen upsets that

are required to be dense in the clopen upsets.

Definition 4.5.
(1) An L-space X is L-spatial if loc X is dense in X.

(2) Let SLPries be the full subcategory of LPries consisting of (L-)spatial L-spaces.

Convention 4.6. We refer to an L-space that is L-spatial as a spatial L-space, dropping
the prefix “L-” when “L-spatial” modifies “L-space.” This avoids unnecessary linguistic
complexity, which becomes particularly relevant as additional properties of frames and their
dual description in terms of L-spaces are introduced. For instance, while L-compact L-
reqular Li-space is precise, it is cumbersome. However, as L-spaces are compact and regular
as topological spaces, referring to an L-space as simply compact or regular may lead to
confusion. To maintain clarity, we adopt the convention that the prefix “L.-” may be omitted

from property names only when immediately followed by “L-space.”

The results above allow us to restrict Pultr-Sichler duality to spatial frames, yielding
an equivalence between SFrm and SLPries. This confirms that spatiality at the frame level

corresponds precisely to L-spatiality at the Priestley space level.

Theorem 4.7. SLPries is dually equivalent to SFrm.

Proof. The result follows by restricting Theorem 3.2 to spatial frames using Theorem 4.4. []

We now define a functor from LPries to Top. To do so, we equip the localic part of an
L-space with a topology and ensure that this assignment is functorial.

22



Definition 4.8 (The topology of the localic part). Let X be an L-space. We view loc X as

a topological space, where U C loc X is open iff U = V Nloc X for some V' € ClopUp(X).

The next result confirms that this topology is precisely the topology of the space of points

of the associated frame.

Lemma 4.9. Let L be a frame and X its Priestley space.
(1) ([ABMZ20, Lem. 5.3(1)]) ¢(a) = ¢(a) Nloc X for each a € L.

(2) ([ABMZ20, Prop. 5.4]) loc X is homeomorphic to pt(L).

Remark 4.10. Let X be a Priestley space.

(1) The topology on loc X is in fact the subspace topology induced by the upper topology 7
(see Remark 2.18). The reason for this is that each U € OpUp(X) is a union of clopen
upsets (see Lemma 2.8(2)) and that clU NlocX = U NlocX (as will be shown in
Lemma 4.16(1)).

(2) If X is the Priestley space of a spatial frame L, then every U € ClopUp(X) satisfies
cl(UNlocX) = U by Theorem 4.4(3). In particular, for each a € L, Lemma 4.9(1)
ensures that cl((a) = cl(¢(a) Nloc X) = ¢(a). Thus, the map ¢(a) — p(a) Nloc X is

an isomorphism from the lattice ClopUp(X) to the lattice Q(loc X).

The next result establishes that L-morphisms between L-spaces restrict to continuous

maps on their localic parts.

Lemma 4.11. Let f: X — Y be an L-morphism between L-spaces.
(1) f(locX) ClocY.

(2) The restriction f: loc X — locY is a well-defined continuous map.
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Proof. (1) Let = € loc X and set U := X \ |f(z). Since x ¢ f~}(U) and f~'(U) is an upset,

it follows that Jz N f~1(U) = @. Because x € loc X, we have that |z is open, so
v fH(U)=f(clU) (see Definition 3.1(2)).

Thus, f(z) € clU, and hence f(z) € int | f(z), where int is the topological interior. It follows
from Lemma 3.4(2) that int | f(z) is a downset. Consequently, since f(x) € int|f(z), we
obtain | f(z) = int | f(z), hence | f(z) is open. Therefore, f(z) € locY'.

(2) That the restriction of f is well defined follows from (1). For continuity, it suffices to

show that f~1(U NlocY) Nloc X is open in loc X for every U € ClopUp(Y). By (1),
1 (UNlocY)Nloc X = f~1(U) Nloc X.
Since f is a Priestley morphism, f~!(U) € ClopUp(X), so f~*(U)Nloc X isopeninloc X. [

We define a functor JL'oc: LPries — Top by assigning to each L-space X its localic part
loc X and to each L-morphism f: X — Y its restriction f: loc X — locY. Functoriality
follows from the fact that restricting an L-morphism automatically preserves identity maps
and composition.

The adjunction between Top to Frm can be formulated purely in terms of Priestley duality
by defining a suitable functor from Top to Pries. Rather than introducing another functor,
we establish an equivalence between SLPries and Sob by proving that -Loc: SLPries — Sob is
essentially surjective, full, and faithful. We first show that the localic part of each L-space
is sober.

The sobriety of the localic part follows directly from Lemma 4.9(2) as it is homeomorphic
to the space of points of the associated frame. We provide an alternative proof that does
not rely on this homeomorphism. It requires the following two lemmas.
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Every closed subset of the localic part can be expressed as the intersection of a clopen
downset with loc X. Lemma 4.12 identifies a unique clopen downset corresponding to each

closed set, providing a canonical representation.

Lemma 4.12. Let X be an L-space. If F' C loc X is closed then | cl F € ClopDn(X) and

F=]clFnNlocX.

Proof. This follows from [ABMZ20, Lem. 4.8], but for completeness we provide a proof. It
suffices to show that U := X'\ | cl F'is closed since | cl F'is a closed downset by Lemma 2.9(1).

Since U is an open upset, clU € ClopUp(X) by (1.2). Suppose for contradiction that
FNeclU # @, meaning that there exists y € F' such that y € clU. Since y € F' C loc X, the
set |y is open. This implies that |y N U # @, meaning that some point in ]y also belongs
to U. Since U is an upset, it follows that y € U = X \ L cl F, so y ¢ | cl F. However, this
contradicts y € F' as F' C [ cl F. Thus, we must have FFNclU = &. Since clU is an upset,

it follows that JF' NclU = &, so clU = U, proving that U is closed. O
Lemma 4.13. If V € ClopDn(X) is join-prime, then V = |y for a unique y € loc X .

Proof. This is proved dually to [BB08, Thm. 2.7(1)], where a similar statement is proved for
clopen upsets. We provide the proof for completeness.
Suppose V' is join-prime. By Lemma 2.9(2), we have | max V' = V/, so it is enough to show
that max V' is a singleton, as this would then imply that |y = V and thus that y € loc X.
Let z,y € maxV with x # y. It follows from the Priestley separation axiom (see (I.1))
that there exist U,,U, € ClopDn(X) such that = € U, # y and y € U, # =z. Since

V = | max V', we obtain

VU, U U{Uy/ |y € maxU and ¢ # z}.
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By compactness, there exist Uy,,...,U,, such that V C U, UU,, U---UU,, . Since finite
unions of clopen downsets are clopen downsets, we define U := U, U---UU,, € ClopDn(X).
Thus, V C U, U U, but since V is join-prime, it follows that either V' C U, or V' C U.
However, this contradicts that = ¢ U and y ¢ U,. Therefore, max V' must be a singleton, as

required. O]
Proposition 4.14. Let X be an L-space. Then loc X is a sober space.

Proof. Let F' Cloc X be an irreducible closed subset. Since open subsets of loc X are of the
form U Nloc X for some U € ClopUp(X), it follows that closed subsets of loc X are of the
form V Nloc X for some V' € ClopDn(X). Therefore, there exists V' € ClopDn(X) such that
F=VnNlocX. By Lemma 4.12, | cl F' is clopen, so we may take V = | cl F. We now show
that V' is a join-prime element of ClopDn(X).

Suppose V' C DU E for some D, E € ClopDn(X). Then F C (DNlocX)U (ENlocX).
Since I is irreducible, it follows that either F¥ C D NlocX C D or FF C ENlocX C E.
Consequently, V C D or V C F, so V is join-prime.

By Lemma 4.13, we conclude that V = |y for a unique y € loc X. Thus, F' = |yNloc X.
Since |y Nloc X is the least closed subset of loc X containing y, it follows that F' is the

closure of y in loc X. Therefore, loc X is sober. m

Proposition 4.14 ensures that L oc: SLPries — Sob is well defined.
Theorem 4.15. Loc: SLPries — Sob is essentially surjective.

Proof. Suppose Y is a sober space. Then Y is homeomorphic to pt(€2(Y’)) (see Theorem 1.10).
Let X be the Priestley space of Q(Y'). By Lemma 4.9(2), we have pt(2(Y")) is homeomorphic
to loc X, establishing the result. O
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The following lemma describes how the closure in an L-space interacts with its localic
part. In general, closure does not preserve finite meets, making Lemma 4.16(3) somewhat
noteworthy. Throughout this thesis, we always write cl to denote the closure in the L-space

(with respect to 7, see Remark 2.18), rather than the closure in the localic part.

Lemma 4.16. Let X be an L-space.
(1) clUNloc X =UNlocX for each U € OpUp(X).
(2) clUNloc X =U for each open subset U of loc X .
If X in addition is L-spatial, then

(3) clUNneclV =cl(UNV) for all open subsets U and V' of loc X.

Proof. (1) The inclusion U Nloc X C clU Nloc X is obvious. For the reverse inclusion, let
y € clUNloc X. Since y € loc X, it follows that |y is open. Thus, JyNU # &, meaning that
there exists x € U with x < y. Since U is an upset, we conclude that y € U, soy € UNloc X.

(2) Since U is open in loc X, there exists V' € ClopUp(X) such that U = V Nloc X. This

gives clU C V, and hence

UCclUNlocX CVNlocX =U.

(3) Let U and V' be open subsets of loc X. Then there exist U’, V' € ClopUp(X) such
that U = U' NlocX and V = V' NlocX. Since X is L-spatial, loc X is dense in X, so

U' =clU and V' = cl V. Therefore, since U’ NV’ is clopen in X, we obtain

UnV =c((UNV)NlocX) =cl((U NlocX)N (V' Nloc X)) =c(UNV).

Thus, clUNeclV =U'NV' =c(UNV). O
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The next result is key to lifting a continuous map between the localic parts of two L-spaces
to an L-morphism between the L-spaces. Since prime filters of clopen upsets correspond
uniquely to points in the space, identifying a prime filter in the clopen upsets of the codomain

allows us to find a point.

Lemma 4.17. Let X and Y be spatial L-spaces, g : loc X — locY a continuous map, and

r € X. Then P, = {U € ClopUp(Y) | x € clg~ (UNlocY)} is a prime filter in ClopUp(Y).

Proof. 1t is clear that #, is an upset. To see that #, is a filter, let U,V € #,. Then
r €cg ™ (UNlocY) and z € clg™'(VNlocY). Since U NlocY and V NlocY are open
in locY and g is continuous, it follows that ¢~ (U NlocY’) and g~ '(V NlocY’) are open in

loc X. Applying Lemma 4.16(3), we obtain

zec(g ' (UnlocY))nellg H(VNlocY)) =cl(g (UNlocY)Ng ! (VNlocY))

=cl(g'((UNV)NlocY)).

Thus, U NV € P,, proving that &, is a filter.
To see that it is prime, suppose UUV € #,. Then z € clg~'((U U V) NlocY). Since, cl

commutes with finite unions, and ¢~! commutes with unions and intersections, we obtain

g '((UuV)NnlocY) =clg ' (UNlocY)Uclg ' (VNlocY).

Therefore, z € clg”' (U NlocY) or z € clg7'(V NlocY), meaning that either U € #, or

Ve P,. Thus, P, is a prime filter. O

The following proposition shows that any continuous map between localic parts of spatial

L-spaces extends uniquely to an L-morphism between the entire L-spaces.
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Proposition 4.18. Suppose that X and Y are spatial L-spaces and g : loc X — locY is a

continuous map. Then there is an L-morphism f : X — Y which extends g.

Proof. Let x € X. By Lemma 4.17, the set
#, = {U € ClopUp(Y) | z € cl(¢" (U NlocY))}

is a prime filter of ClopUp(X). By Proposition 2.10, we have (%, = 1z, for a unique
zy €Y. Define f: X — Y by f(z) = 2, for each z € X. It is clear that f is well defined.

To see that f extends g, suppose y € loc X. Then

tg(y) = (U € ClopUp(Y) | g(y) € U}
= (U € ClopUp(Y) | g(y) € UNlocY}
= ﬂ{U € ClopUp(Y) |y € g {(UNlocY)}

— ({U € ClopUp(Y) | y € cllg™ (U NlocY)]} = (%,

where the second-to-last equality follows from Lemma 4.16(2). Thus, by definition of f, we

have f(y) = g(y).
To see that f is continuous, let U € ClopUp(Y'). Then U NlocY is open in locY. Since
g is continuous, ¢~} (U NlocY) is open in loc X, so clg~} (U NlocY) € ClopUp(X) (because

X is L-spatial). Since clg™'(U NlocY) = f~1(U), it follows that
recdg ' (UnlocY) < UeP, < (P CU < 1f(x)CU
— f(r)eU < z€ f1(U),

where in the second equivalence we use that U is clopen, and thus compact. This shows
that f~1(U) € ClopUp(X). Since clopen downsets are complements of clopen upsets, we
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also have that f~(D) € ClopDn(X) for each D € ClopDn(Y"). Therefore, f is continuous
as clopen upsets and clopen downsets form a subbasis of Y (see Lemma 2.8(1)).

To see that f is order-preserving, note that since clg='(U NlocY) = f~1(U) is an upset,
the relation z < z implies that #, C #,. Therefore, (P, C [ Ps, so f(z) < f(2).

It remains to show that cl f~1(U) = f~'clU for each U € OpUp(Y). The left-to-right
inclusion follows from the continuity of f. For the right-to-left inclusion, let z € f~!(clU).
Then f(x) € clU, so 1f(x) C clU by Lemma 3.4(3). Consequently, (%, C clU. Since clU
is open by (1.2), and &, is a filter, compactness ensures the existence of V' € @, such that

V CclU. Since the former means
vecg H(VNlocY)=clf ' (VNlocY),
combining this with V' C clU and applying Lemma 4.16(1), we obtain
zecf(VNlocY)Cel(f(cdUNlocY)) =clfHUNlocY) C el fHU).
Thus, f is an L-morphism. O]

Having established that -Loc is essentially surjective, we can now prove that it is full and

faithful.
Theorem 4.19. Loc : SLPries — Sob is full and faithful.

Proof. To see that JLoc is full, suppose g : loc X — locY is a continuous map. By Proposi-
tion 4.18, there exists an L-morphism f : X — Y that extends g. Thus, Loc(f) = g, proving
fullness.

To show that JLoc is faithful, suppose f,g: X — Y are L-morphisms with f # g. Since
loc X is a dense subset of X and Y is Hausdorff, f and ¢ must be the unique extensions
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of their restrictions Loc(f) and Loc(g) to loc X (see, e.g., [Engd9, p. 70]). Consequently,

Loc(f) # Loc(g), proving faithfulness. ]

We thus conclude that JLoc establishes an equivalence:

Corollary 4.20. SLPries is equivalent to Sob.

Proof. By Theorems 4.15 and 4.19, the functor -Loc: SLPries — Sob is essentially surjective,

full, and faithful. Therefore, Loc is an equivalence of categories (see, e.g., [MLI&, p. 93]). O

Combining Theorem 4.7 and Corollary 4.20 provides an alternative proof of the well-
known result from Section 1 that SFrm is dually equivalent to Sob (see Theorem 1.10). The
results of this section are summarized in the final two rows of Fig. 3, where we use the
same notation as in the previous chapter. In Chapter I1I, we will refine this correspondence

further, restricting it to obtain an alternative proof of Hofmann—-Lawson duality.

Frm ¢~y LPries
SFrm s SLPries +—=2Y 5 Sob

Figure 3: Restricting Pultr-Sichler duality to spatial frames results in the dual equivalence

of SFrm and Sob through Priestley duality.

5 Priestley spaces of compact frames: Scott upsets and compactness

Having established the equivalence between SLPries and Sob via the functor £ oc, we now
turn our attention to compact frames and their Priestley spaces. We focus on a characteri-

zation of compact elements in the language of Priestley spaces and describe the way-below
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relation in terms of Priestley duality. The main insight is that compactness of a frame can
be understood through the localic part of its Priestley space. In particular, the compact ele-
ments of a frame correspond to clopen Scott upsets in the Priestley space, which are special
closed upsets whose minimal elements belong to the localic part.

To formalize this, we introduce Scott upsets, which will play a central role in the upcoming

results.

Definition 5.1. Let X be an L-space. We call F' € ClUp(X) a Scott upset if min F' C loc X.

We denote by SUp(X) the subposet of ClUp(X) consisting of Scott upsets.

Scott upsets are those closed upsets that have their minimal elements in loc X (see Fig. 4).
Their importance lies, among other things, in the connection to compactness: as we will see
in Section 6, they provide a description of Scott-open filters in the language of Priestley

spaces.

>

Figure 4: Scott upsets visually.

The next lemma provides an alternative characterization of Scott upsets, showing that

they can also be described in terms of how they interact with the closure of open upsets.
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Lemma 5.2. Let X be an L-space and F € ClUp(X). The following are equivalent:
(1) min F' C loc X.
(2) F=1(FnNlocX).

(3) For each U € OpUp(X), from F C clU it follows that FF C U.

Proof. (1)=-(2) By Lemma 2.9(2), F' = tmin F. Since min /' C F'Nloc X by (1),

F=1minF CfH(FnlocX)CF,

where the last inclusion holds because F' is an upset.
(2)=-(3) Suppose U € OpUp(X) such that F' C clU. Then, applying Lemma 4.16(1), we
obtain

FnNnlocX CclUNlocX =UnNlocX.

Therefore, F'NlocX C U. By (2), F =1(F NlocX) C U since U is an upset.

(3)=-(1) Suppose towards a contradiction that there exists y € min F' \ loc X. Then ]y
is not open, so U := X \ ly is not closed. Consequently, Ly NclU # &. Since ]y is a closed
downset, it follows that U € OpUp(X), and therefore clU € ClopUp(X) by (I.2). Thus,
y € clU, and hence, by Lemma 2.9(2), F'=1tmin F' C clU. Applying (3), we obtain F' C U,

contradicting y ¢ U. Consequently, min F' C loc X, completing the proof. O

It is worth noting that in the implication (3)=(1), we proved the following fact, which

will be utilized in what follows.

Lemma 5.3. Let X be an L-space. If x ¢ loc X, then U == X \ |z is an open upset such

that x € clU.
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Remark 5.4. In [PS00], closed sets satisfying Lemma 5.2(3) are referred to as “L-compact”

sets. This makes Scott upsets the upsets of L-compact sets.

Lemma 5.2(3) is closely related to the way-below relation, which we can express in terms

of Priestley duality.

Definition 5.5 (see, e.g., [GHIKT03, p. 49]). Let L be a frame and a,b € L.
(1) We say a is way below b, written a < b, provided for each S C L, from b < \/ S it
follows that a < \/ T for some finite T C S.
(2) The element a is said to be compact if a < a.

(3) The frame L is said to be compact if its top element 1 is compact.

Proposition 5.6. Let L be a frame, X its Priestley space, and a,b € L. Then a < b iff
@o(b) C clU implies p(a) CU (IL.1)
for each U € OpUp(X).

Proof. First, suppose a < b and U € OpUp(X) such that ¢(b) C clU. Since U = |J ¢[S]
for some S C L (see Lemma 2.8(2)), it follows that ¢(b) C cl|JS. By (I.3), we obtain that

b <\/S. Since a < b, there exists a finite subset ' C S such that a < \/T C S. Thus,

pla) C el CU.

Conversely, suppose (11.1) holds for each U € OpUp(X). Let b <\/ S for some S C L. By
(1.3), @(b) C cll ¢[S]. Therefore, p(a) C |J[S] by (I1.1). By compactness, there exists a

finite subset T C S such that p(a) C |J¢[T]. Thus, @ < \/ T, which implies that a < b. O

This leads to a natural definition of the way-below relation for subsets of an L-space.
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Definition 5.7. Let X be an L-space. For subsets Y, Z C X, we write Y <« Z iff for each

U € OpUp(X), from Z C clU it follows that Y C U.

Using this definition and Lemma 5.2(3), we see that Scott upsets are precisely the closed
upsets F' satisfying F' < F'. The next result establishes that compact elements of a frame

correspond to clopen Scott upsets of its Priestley space.

Theorem 5.8. Let L be a frame and X its Priestley space.
(1) a € L is compact iff p(a) is a Scott upset.

(2) L is compact iff min X C loc X.

Proof. (1) This follows directly from Lemma 5.2 and Proposition 5.6

(2) Since (1) = X, it follows from (1) that

L is compact <= 1 is compact <= ¢(1) is a Scott upset <= min X C loc X. O

Remark 5.9. While Theorem 5.8(2) is already known (see [BGJ16, Lem. 3.1]), the above

proof is particularly short.

The final step in this section is to restrict Pultr—Sichler duality to compact frames.

Definition 5.10. An L-space X is L-compact if min X C loc X.

Let KFrm be the full subcategory of Frm consisting of compact frames and let KLPries be

the full subcategory of LPries consisting of compact L-spaces.

Corollary 5.11. KLPries is dually equivalent to KFrm.

Proof. The result follows by restricting Theorem 3.2 to the subcategory of compact frames,
using Theorem 5.8(2) to establish the equivalence. O
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We next connect compact L-spaces to compact sober spaces. Since compact frames are
not spatial, we need to restrict to compact spatial frames to obtain a one-to-one correspon-

dence between compact L-spaces and compact topological spaces.

Lemma 5.12. Let X be an L-space. If X is L-compact, then loc X is compact. If in addition

X is L-spatial, then the converse also holds.

Proof. Suppose X is L-compact. Let U be an open cover of loc X. For each U’ € U, there

exists U € ClopUp(X) such that U Nloc X = U’. Since X is L-compact,
min X ClocX C U{U | U e U}.

Therefore, X = tmin X C (J{U | U" € U} because the latter is an upset. Since X is

compact, there exist U, ..., U} € U such that X C U; U---UU,. Thus, we have
locX C(UyU---UU,)NlocX =U;U---UU,,

which shows that loc X is compact.
Conversely, suppose X is not L-compact. Then there exists z € min(X) \ loc X. By
Lemma 5.3, z € clU, where U = X \ Jz € OpUp(X). Since U is an open upset, it follows

from Lemma 2.8(2) that U = [J{V € ClopUp(X) | z ¢ V'}. Therefore,
X =clU =c| J{V € ClopUp(X) | z ¢V},

and hence loc X C | J{V € ClopUp(X) | x ¢ V} by Lemma 4.16(1). If loc X were compact,
there would exist V' € ClopUp(X) such that z ¢ V and loc X C V. Since X is L-spatial, this

would imply that x € X = clloc X C V', a contradiction. Thus, loc X is not compact. O
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Theorem 5.13. For a spatial frame L and its Priestley space X, the following are equivalent:
(1) L is compact.
(2) X is L-compact.

(3) loc X is compact.

Proof. (1)<(2) This is Theorem 5.8(2).

(2)<(3) This follows from Lemma 5.12 since X is L-spatial by Theorem 4.4. O

Let KSFrm be the full subcategory of SFrm consisting of compact spatial frames, KSLPries
the full subcategory of SLPries consisting of compact SL-spaces, and KSob the full subcate-

gory of Sob consisting of compact sober spaces.

Corollary 5.14.
(1) KSLPries is dually equivalent to KSFrm.

(2) KSLPries is equivalent to KSob.

Frm #\vavvvvvvv\»-> LPries

/ /SFrm rrneonnns SLPries «+—22% 5 Sob

KFrm Wm KLPries

S

5.14(1)

KSFrm KSLPries <—> KSob

Figure 5: Equivalences and dual equivalences among categories of compact frames, compact

L-spaces, and compact topological spaces.

The results of this section are summarized in Fig. 5. They clarify how compactness

of a frame is linked to its space of points. Through Priestley duality, compact elements
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of a frame correspond to clopen Scott upsets, which are defined in terms of their minimal
elements. Since these minimal elements belong to the localic part, the presence of compact
elements in the frame is determined by the structure of the localic part. However, the localic
part coincides with the space of points of the frame (see Lemma 4.9(2)). Thus, compactness
at the frame level is not merely reflected in the space of points, it is a fundamental property
of it. The dual equivalence between compact frames and compact L-spaces further reinforces
this connection, showing that compactness of a frame translates to its Priestley space being
a Scott upset.

In the next section, we will see how Scott upsets play a central role in proving the

Hofmann—Mislove Theorem, further demonstrating their significance.

6 Scott upsets and their role in Hofmann—Mislove

We begin the section by describing the equivalence of the Hofmann—Mislove Theorem
and Theorem 2.11 in the setting of spectral spaces. The following definition is standard (see,

e.g., [GHK 03, p. 134]).

Definition 6.1. Let L be a frame. Then F' € Filt(L) is called Scott-open if \/ S € F implies
\/ T € F for some finite T'C S. Let OFilt(L) be the poset of Scott-open filters of L, ordered

by reverse inclusion.

For a topological space X, we denote by KSat(X) the poset of compact saturated subsets

ordered by inclusion.

Remark 6.2. It is more customary to order OFilt(L) by inclusion and KSat(X) by reverse

inclusion (see [GHK 03, Sec. 1I-1]). Our ordering is motivated by how we ordered posets of
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filters and closed upsets in Section 2.

Theorem 6.3 (Hofmann—Mislove [HMS&1]). Let X be a sober space. Then KSat(X) is

isomorphic to OFilt(Q2(L)).

As observed in [BBGIK10], when X is a spectral space, the Hofmann-Mislove Theorem

and Theorem 2.11 are equivalent results:

Remark 6.4.

(1)

Let D be a bounded distributive lattice and L be its frame of ideals. Then L is a
coherent frame (see, e.g. [Joh82, p. 64]), meaning that its compact elements form a
bounded sublattice that join-generates L. Moreover, sending D to L defines a covariant
functor that establishes an equivalence (see, e.g. [Joh82 p. 65]) between DLat and
the category CohFrm of coherent frames and coherent frame homorphisms (i.e., frame
homomorphisms that preserve compact elements, see Definition 12.6(1)). Under this
equivalence, the posets Filt(D) and OFilt(L) are isomorphic.

Let X be the Priestley space of D. By Theorem 2.11, the poset Filt(D) is isomor-
phic to ClUp(X), which in turn is isomorphic to KSat(X,), where X, is the spectral
space corresponding to X (see Theorem 2.17). Since every spectral space arises this
way, it follows that Hofmann—Mislove Theorem for spectral spaces is equivalent to

Theorem 2.11.

We now extend Remark 6.4(1) beyond spectral spaces by using Pultr—Sichler duality

to prove the Hofmann—Mislove Theorem for arbitrary frames and then specialize to sober

spaces. The key to proving the theorem is the one-to-one correspondence between Scott-open

filters of the frame and Scott upsets of its Priestley space.
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If Fis a filter of a frame L, we recall from Theorem 2.11 that its corresponding closed
upset is given by Kr = ([{¢(a) | @ € F'}. The next lemma establishes a key connection

between Scott-open filters and Scott upsets.

Lemma 6.5. Let L be a frame and X its Priestley space. For a filter F C L, F' is Scott-open

iff Kr is a Scott upset.

Proof. First, suppose K is a Scott upset and \/ S € F for some S C L. Then

Kr C gp(\/S) :CIU¢[S].

By Lemma 5.2, K C |J¢[S]. Since K is closed, it is compact, so there exists a finite subset

T C S such that Kp CJ[T]| = ¢(V/T). Thus, \/T € F, and hence F' is Scott-open.
Conversely, suppose K is not a Scott upset, so there exists x € min K \ loc X. By

Lemma 5.3, z € clU,, where U, = X \ Jz € OpUp(X). Define S :={s € L | p(s) C U,}.

Then, by Lemma 2.8(2), U, = |J¢[S]. Applying (I.3), we get

JZGClUx:dU(p[S] :gp<\/5>.

Since (min Kr) N )z = {z} and = € ¢(\/ 9), it follows that Kr = Tmin Kr C p(\/ S) (see
Lemma 2.9(2)). Thus, \/ S € F' (see Theorem 2.11 and (I.3)).

On the other hand, for each s € S, we have ¢ ¢(s). Since for each finite " C S, we
have o(\/ T') = J¢[T], it follows that ¢ ¢(\/ T'). Thus, Kr € ¢(\/ T'), which implies that

\/ T ¢ F for all finite T C S. Consequently, F' is not Scott-open. ]

As as a consequence, we establish an isomorphism between the poset of Scott-open filters

of a frame and the poset of Scott upsets of its Priestley space.
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Theorem 6.6. Let L be a frame and X its Priestley space. Then OFilt(L) is isomorphic to

SUp(X).

Proof. By Theorem 2.11, the poset Filt(L) is isomorphic to ClUp(X). By Lemma 6.5, this

isomorphism restricts to an isomorphism between OFilt(L) and SUp(X). O

The following theorem is the Priestley analogue of the Hofmann—Mislove Theorem. It

plays a crucial role in proving Hofmann-Lawson duality via Priestley duality (see Section 8).

Theorem 6.7. Let X be an L-space. Then SUp(X) is isomorphic to KSat(loc X). This

1somorphism is established by the maps:

F— FnlocX for F € SUp(X),

Q— 1TQ for @ € KSat(loc X).

Proof. Define f: SUp(X) — KSat(loc X) by f(K) = K NlocX. We first verify that f is
well defined. By [ABMZ20, Lem. 5.3|, the specialization order on loc X is the restriction
of the partial order on X to loc X. Since K is an upset in X, it follows that K Nloc X is
saturated in loc X.

To show compactness, suppose K Nloc X C |J((a;). Applying Lemma 4.9(1) yields

UC(ai) = U(locX Ny(a;)) =loc X N ng(ai).

Thus, K NlocX C |Jy(a;). Since K is a Scott upset, we have min K C loc X, so
min X C |Jp(a;). Applying Lemma 2.9(2), K = tTmin K C (Jg(a;). Since K is com-

pact in X, there exist a;,...,a;, such that K C ¢(a;) U -+ U ¢(a;,). Consequently,

K nNlocX C ((a;,)U---UC((a;,), which shows that K Nloc X is compact in loc X. Hence,

f is well defined, and it clearly preserves C.
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Next, define g: KSat(loc X) — SUp(X) by ¢(Q) = 11Q. To show that 7@ is a closed
upset, let © € 1Q. Then y £ « for all y € Q). By the Priestley separation axiom (see (I.1)),
for each y € @, there exists U, € ClopUp(X) such that y € U, and x ¢ U,. Therefore,
Q C UyeQ U,. Since U, Nloc X is open in loc X, () is compact in loc X, and a finite union of
clopen upsets of X is a clopen upset of X, we can conclude that there exists U € ClopUp(X)
such that Q C U and = ¢ U. Since U is an upset in X, it follows that 1) C U. Thus,
1@ is the intersection of clopen upsets of X containing 1(), and hence T() is a closed upset.
Therefore, g is well defined, and it clearly preserves C.

Finally, we show that f and g are inverses of each other. If K is a Scott upset of X, then
gf(K)=1(KNlocX)=K
by Lemma 5.2. Similarly, if ) is compact saturated in loc X, then

f9(Q) =1Q Nloc X = Q.

Thus, f and g are order-preserving maps that are inverses of each other, proving that SUp(X)

is isomorphic to KSat(loc X). O

The Hofmann—Mislove Theorem follows immediately from Theorems 6.6 and 6.7. How-
ever, the result extends beyond the sober setting: we have shown that for an arbitrary frame
L, the poset of Scott-open filters OFilt(L) is isomorphic to the poset of compact saturated

sets of pt(L). This general form of the theorem appears in [Vic89, Thm. 8.2.5].

Corollary 6.8 (Hofmann-Mislove).
(1) If L is a frame, then OFilt(L) is isomorphic to KSat(pt(L)).
(2) If X is a sober space, then OFilt(2(X)) is isomorphic to KSat(X).
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Proof. (1) Let X be the Priestley space of L. By applying Theorems 6.6 and 6.7, we have
that OFilt(L) is isomorphic to KSat(loc X'). The result follows as loc X is homeomorphic to
pt(L) (see Lemma 4.9(2)).

(2) Since X is sober, it is homeomorphic to pt(2(X)) (see Theorem 1.10). Applying (1)

completes the proof. O

The following corollary describes the relationship between Scott-open filters and com-

pletely prime filters of a frame. Corollary 6.9(2) appears in [Ban&1, Lem. 3].

Corollary 6.9. Let L be a frame and X its Priestley space.
(1) A Scott-open filter F' is completely prime iff min Kg is a singleton.

(2) Ewvery Scott-open filter of L is an intersection of completely prime filters of L.

Proof. (1) It is well known (see, e.g., [GHIKT03, p. 414]) and easy to see that a Scott-open
filter is completely prime iff it is prime. Thus, F'is completely prime iff min K is a singleton
(see, e.g., [BBGIK10, Cor. 6.7]).

(2) Let F' be a Scott-open filter and suppose a ¢ F. Then Kr Z ¢(a), so there exists
y € min Kp with y ¢ ¢(a). By Lemma 6.5, K is a Scott upset, which implies that y € loc X.
Thus, by Lemma 4.1, y is completely prime. Moreover, since y € K, it follows that ' C y.
Furthermore, since y & p(a), we have a ¢ y. Thus, there exists a completely prime filter y
that contains F' but does not contain a. Consequently, F' is the intersection of completely

prime filters of L that contain F'. O]

Remark 6.10. The Hofmann—Mislove Theorem is traditionally proved using Zorn’s Lemma.
Our proof also depends on Zorn’s Lemma as it is used in Lemma 2.9(2). However, this
reliance can be avoided by defining Scott upsets in terms of either (2) or (3) of Lemma 5.2.
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Under the assumption of Zorn’s Lemma, these formulations are equivalent to being a Scott
upset (as shown in Lemma 5.2). Consequently, when working through Priestley duality, the
Hofmann—Mislove Theorem can be derived using only the Prime Ideal Theorem, which is
strictly weaker than Zorn’s Lemma and the Axiom of Choice. Moreover, [Frnl8, Thm. 3]
establishes that the Hofmann—Mislove Theorem is equivalent to the Prime Ideal Theorem,

meaning that this assumption cannot be avoided.

In the next chapter of the thesis, we will restrict the equivalences between SFrm, SLPries,
and Sob using Theorem 6.7. The importance of this theorem lies in its role as the Priestley

analogue of the Hofmann—Mislove Theorem.
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Chapter III
A Priestley journey from

Hofmann—Lawson to Isbell

The well-known equivalence between Sob and SFrm (see Theorem 1.10) restricts to several
prominent duality results in pointfree topology. Notably, these include the following:

¢ Hofmann—Lawson duality: The category ConFrm of continuous frames with proper
frame homomorphisms is dually equivalent to the category LKSob of locally compact
spaces with proper continuous maps | .

e Dual equivalences for stably continuous frames: The full subcategory StCFrm of
ConFrm consisting of stably continuous frames is dually equivalent to the full subcat-
egory StLKSp of LKSob consisting of stably locally compact spaces (see, e.g., | ,

, ) |). This further restricts to a dual equivalence between the full
subcategories StKFrm of stably compact frames and StKSp of stably compact spaces.

e Isbell duality: The full subcategory KRFrm of Frm consisting of compact regular
frames is dually equivalent to the full subcategory KHaus of Top consisting of compact
Hausdorff spaces | | (see also | : 1.

Since every frame homomorphism between compact regular frames is proper, KRFrm
forms a full subcategory of StKFrm. Similarly, KHaus is a full subcategory of StKSp. We
thus arrive at the diagram in Fig. 6, where we use the same notation as in the previous
chapters (i.e., A ¢~~~ B indicates that A is dually equivalent to B and A —— B that

A is a full subcategory of B).
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Figure 6: Correspondence between various categories of continuous frames and locally com-

pact sober spaces.

This chapter provides a dual description of the categories ConFrm, StCFrm, StKFrm, and
KRFrm in the language of Priestley spaces. These descriptions lead to alternative proofs of the
dual equivalences mentioned above while also offering new insights into these classic results
from the perspective of Priestley duality. Specifically, we characterize continuity, stability,
and regularity of a frame in terms of special maps on the clopen upsets of its Priestley space,
which we term kernels. As we will see, kernels provide a powerful and systematic framework
for rigorously describing properties of frames.

Beyond reproving these results, this approach establishes new subcategories of Priestley
spaces that are equivalent to important categories of topological spaces such as LKSob,
StLKSp, StKSp, and KHaus. We believe that results of this nature can foster further cross-
fertilization between these branches of mathematics.

The chapter is organized as follows. In Section 7, we recall the relevant definitions and
introduce the key categories of locally compact sober spaces and continuous frames, along
with the duality results from Hofmann—-Lawson to Isbell. Section 8 introduces a kernel

associated with continuity and uses it to characterize continuous frames in terms of Priestley
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spaces. Then we connect the associated Priestley spaces with locally compact sober spaces,
leading to a new proof of Hofmann-Lawson duality. In Section 9, we derive the duality
between stably continuous frames and stably locally compact spaces by describing stability
via kernels. This also provides a new proof of the duality between stably compact frames and
stably compact spaces. Finally, Section 10 describes regularity in the language of Priestley
spaces by introducing a kernel associated with regularity, thus offering an alternative proof

of Isbell duality.
7 Locally compact sober spaces and continuous frames

In this section, we introduce the relevant categories of locally compact sober spaces and
continuous frames. Two relations on frames are particularly important to us: the way-below
relation < (see Section 5) and the well-inside relation < (see, e.g., [Joh&2, p. 80]). Recall

that for a frame L and an element a € L, the pseudocomplement of a is defined by
a*:\/{xeL|a/\a::0}.
We say that a is well inside b, written a < b, provided a* vV b = 1.

Definition 7.1. Let L be a frame.
(1) Lis continuousif a=\/{be L|b<a} forallaec L.

(2) L is regularif a =\/{be L|b=<a} forall a € L.

Each frame homomorphism h: L — M preserves the well-inside relation, meaning that

a < b implies h(a) < h(b), but may not preserve the way-below relation.
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Definition 7.2.
(1) A frame homomorphism h: L — M is proper provided it preserves the way-below
relation, meaning that a < b implies h(a) < h(b).
(2) Let ConFrm be the category of continuous frames and proper frame homomorphisms

between them.

Recall from Section 5 that an element a of a frame L is compact if a < a, and that L
is compact if its top element is compact. The way-below relation < is said to be stable if

a << band a < cimply a << bAcforall a,b,ce L.

Definition 7.3.

(1) (see, e.g., [GHIKT03, p. 488]) A frame L is stably continuous if L is continuous and < is
stable. Let StCFrm be the full subcategory of ConFrm consisting of stably continuous
frames.

(2) (see, e.g., [GHIKT03, p. 488]) A frame L is stably compact if L is compact and stably
continuous. Let StKFrm be the full subcategory of StCFrm consisting of stably compact
frames.

(3) (see, e.g., [PP12, p. 133]) Let KRFrm be the full subcategory of Frm consisting of

compact regular frames.

If L is compact, then a < b implies a < b, and if L is regular, then a < b implies
a < b (see, e.g., [PP12, Lem. 5.2.1]). Therefore, in a compact regular frame, the way-below
and well-inside relations coincide. Since a < b and a < ¢ imply a < b A ¢, it follows that
every compact regular frame is stably compact. Consequently, KRFrm is a full subcategory
of StKFrm.
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An overview of the categories of frames defined above is given in the conclusions (see
Table 2). We now turn our attention to the categories of spaces that correspond to these
categories of frames.

Recall that a set is saturated if it is an intersection of open sets, and the specialization

preorder on a topological space is defined by x <y iff x € cl{y} (see Remark 2.18).

Definition 7.4.
(1) A topological space X is locally compact if for each open set U and x € U, there exist
an open set V and a compact set K such that r € V C K C U.
(2) A continuous map f: X — Y between topological spaces is proper if
(i) 4f(A) is closed for each closed set A C X, where | is the downset in the special-
ization preorder on X.
(i) f~'(B) is compact for each compact saturated set B C Y.
(3) Let LKSob be the category of locally compact sober spaces and proper continuous maps

between them.

The following definitions are well known; see, e.g., [GHIT03]:

Definition 7.5.
(1) The space X is coherent if the intersection of two compact saturated sets is again
compact.
(2) A space X is stably locally compact if it is locally compact, sober, and coherent. Let
StLKSp be the full subcategory of LKSob consisting of stably locally compact spaces.
(3) A space X is stably compact if it is compact and stably locally compact. Let StKSp be
the full subcategory of StLKSp consisting of stably compact spaces.
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(4) Let KHaus be the full subcategory of Sob consisting of compact Hausdorff spaces.

Remark 7.6.
(1) By [GHKT03, Lem. VI-6.21], if X is sober and Y is locally compact, then condition
(i) follows from condition (ii) in Definition 7.4(2).
(2) In compact Hausdorff spaces, the specialization order is the identity. Hence, compact
saturated sets are simply closed sets. Therefore, since every compact Hausdorff space

is sober and locally compact, KHaus is a full subcategory of StKSp.

An overview of the categories of topological spaces defined above is given in the conclu-
sions (see Table 3).
Restricting the dual equivalence of SFrm and Sob (see Theorem 1.10) yields the following

well-known duality results:

Theorem 7.7.
(1) (Hofmann-Lawson duality) ConFrm is dually equivalent to LKSob.
(2) StCFrm is dually equivalent to StLKSp.
(3) StKFrm is dually equivalent to StKSp.

(4) (Isbell duality) KRFrm is dually equivalent to KHaus.

Hofmann-Lawson duality was established in [HL78] (see also [GHICT03, Prop. V-5.20]).
The dualities in (2) and (3) of Theorem 7.7 trace back to [GK77, Joh81, Sim&2, Bangl]
(see also [GHIKT03, Thm. VI-7.4]). Isbell duality was given in [Ish72] (see also [BMS&0] and
[Joh82, Sec. VII-4]). These results yield the diagram in Fig. 6.

In the following sections, we will give new proofs of these results through Priestley duality.
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8 Priestley spaces of continuous frames: the kernel of Hofmann—Lawson

In this section, we provide a proof of Hofmann—Lawson duality using Priestley duality. To
do so, we describe the Priestley spaces of continuous frames and characterize the Priestley
duals of proper frame homomorphisms. We then restrict the dual equivalence of SLPries
with SFrm, along with its equivalence with Sob, to the categories of continuous L-spaces,
continuous frames, and locally compact sober spaces. This offers a new perspective on
Hofmann-Lawson duality.

For an L-space X, we describe continuity in terms of a map ClopUp(X) — OpUp(X).
Since this approach will also be used to characterize several classes of Priestley spaces of

different frames, we introduce the following terminology.

Definition 8.1. Let X be an L-space.
(1) A map ker: ClopUp(X) — OpUp(X) is called a kernel if
e ker U C U for each U € ClopUp(X);
e ker is monotone.
(2) A kernel ker is representative if ker U is dense in U for each U € ClopUp(X).

(3) A kernel ker is stable if ker U Nker V =ker(U NV) for all U,V € ClopUp(X).

Let X be an L-space and U,V C X. Recall (see Definition 5.7) that V < U if U C clW

implies V' C W for each W € OpUp(X).

Definition 8.2. Suppose X is an L-space and U € ClopUp(X). The continuous part of U
is defined as

conlUU = | J{V € ClopUp(X) | V < U}.
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If X is the Priestley space of a frame L and U = ¢(a) for some a € L, we simply write

con(a) for conU.

Remark 8.3. The continuous part of a clopen upset U is referred to as the kernel of U in

[BM23, BM25].

We will now show that con is a kernel and relate it to the way-below relation <.

Lemma 8.4. Let X be an L-space and U,V € ClopUp(X).
(1) The map con is a kernel.
(2) VCconlU iff VKU.
(3) U C W implies conU C W for each W € OpUp(X).
(4) U is a Scott upset iff conU = U.

Moreover, if X is the Priestley space of a frame L and a,b € L, then
(5) a < b iff p(a) < (b) iff p(a) C con(b).

Proof. (1) Tt is immediate from the definition that conU € OpUp(X). Also, conU C U
because V' < U implies V' C U (since U € OpUp(X) and clU = U). To see that con is
monotone, let Uy, Uy, V' € ClopUp(X) with U; C Uy and V < Uy. Suppose W € OpUp(X)
such that Uy C clW. Then Uy C clW, so V C W. Hence, V < U,. Consequently,
conlU; C conUs.

(2) The right-to-left implication is immediate from the definition. For the left-to-right
implication, if V' C conU then by compactness and directedness there is a clopen upset
V' <« U such that V C V'. Therefore, V < U.

(3) Suppose U C clW and let x € conU. Then there exists V' € ClopUp(X) with
r eV «U. Hence, z € V C W.

52



(4) Suppose U is a Scott upset. Then U < U by Lemma 5.2(3). Hence, U C conU
by (2). The reverse inclusion follows from (1) since kernels are monotone. For the converse,
suppose conU = U. By (3), U C clW implies U = conU C W for each W € OpUp(X).
Thus, U is a Scott upset by Lemma 5.2(3).

(5) Suppose that a < b and U € OpUp(X) is such that ¢(b) C clU. Since U = |J¢[95]

for some S C L (see Lemma 2.8(2)), by (1.3), we have

ey Al Jelsl = ¢ (V).

Therefore, b <\/ S. Since a < b, there is a finite 7' C S such that a <\/T. Thus,

ea) o (V1) =Uelr) cJels) = U.

Consequently, p(a) < ¢(b).
Conversely, suppose that p(a) < ¢(b). Therefore, ¢(b) C clU implies ¢(a) C U for each

U € OpUp(X). Let b < \/ S for some S C L. Then

o(b) C o (\/ S) = Clng[S].

By assumption, ¢(a) C [J¢[S]. Since ¢(a) is compact, p(a) C ¢[T] = ¢(\/ T) for some
finite T'C S. Thus, a < \/ T, and hence a < b.

This proves that a < b iff p(a) < ¢(b). The latter is equivalent to ¢(a) C con(b)
by (2). O
Remark 8.5. The equivalence of the first two statements of Lemma 8.4(5) was first proved
in [P588, Prop. 3.6].

The following theorem establishes that a frame is continuous precisely when con is rep-
resentative in its Priestley space.
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Theorem 8.6. Let L be a frame and X its Priestley space. Then L is a continuous frame

iff con is representative.

Proof. Let a € L. By (1.3) and Lemma 8.4(5),
a= \/{b €eL|b<a} < ¢(a)=clcon(a) <= con(a) is dense in p(a).
Therefore, L is continuous iff con is representative. ]

Proposition 8.7. Let h: L1y — Ly be a frame homomorphism and f: Xo — X its dual

L-morphism. Then h is proper iff
f*(conU) C con f~H(U) (IIL.1)
for all U € ClopUp(Xj).

Proof. First, suppose that h is proper and U € ClopUp(X;). Let x € f~!(conU). Then
f(z) € conU. Therefore, there exists V' € ClopUp(X;) with f(z) € V <« U. Since
U,V € ClopUp(X;), there exist a,b € L; with ¢(a) = V and ¢(b) = U. Then a < b by
Lemma 8.4(5). Since h is proper, ha < hb. Hence, using Lemma 8.4(5) again, p(ha) < @(hb).
By Remark 2.5, f~4(V) = ¢(ha) and f~Y(U) = ¢(hb). Thus, z € f~1(V) < f~1(U), and so
x € con f1(U).

Conversely, suppose (111.1) holds for all U € ClopUp(X;). Let a < b. Then ¢(a) C con(b)
by Lemma 8.4(5). Therefore, f~(¢(a)) € f~'(con(b)). Thus, f~'(p(a)) C con f~1(p(b)) by

(IT1.1). Consequently, f~'(p(a)) < f~(¢(b)) by Lemma 8.4(2). Hence, using Remark 2.5,

p(ha) = [~ (p(a)) < (b)) = (hb),

and so ha < hb by Lemma 8.4(5), yielding that h is proper. O
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It is straightforward to verify that the identity L-morphism is proper and that the com-
position of two proper L-morphisms is again proper. That is, the category introduced in the

following definition is well defined.

Definition 8.8.
(1) An L-space is L-continuous if con is representative.
(2) An L-morphism f: X — Y is proper provided f~'(conU) C con f~}(U) for each
U € ClopUp(X).

(3) Let ConLPries be the category of continuous L-spaces and proper L-morphisms.

The name L-continuous is justified by Theorem 8.6. We now establish the dual equiva-

lence between the category of continuous L-spaces and the category of continuous frames.
Theorem 8.9. ConFrm s dually equivalent to ConLPries.

Proof. The units ¢: L — (ClopUpoX)(L) and e: X — (X o ClopUp)(X) of Pultr-Sichler
duality (see Theorem 3.2) remain isomorphisms in ConFrm and ConLPries. Thus, it follows
from Theorem 8.6 and Proposition 8.7 that the restrictions of the functors X and ClopUp

yield the desired dual equivalence. O

Next, we connect ConLPries with the category LKSob of locally compact sober spaces. To
do so, we establish a close connection between the way-below relation < and Scott upsets in
continuous L-spaces. It was shown in [PS00, Sec. 5] that U < V' iff there is a Scott upset F’
such that U C F C V. Technically, this statement in [PS00] is formulated for L-compact sets
rather than Scott upsets, but the formulations are equivalent by Remark 5.4. We include
proofs both for completeness and to align with our terminology, which differs from that of
[PS00].
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Lemma 8.10 ([PS00, Lem. 5.3]). Let X be a continuous L-space and U,V € ClopUp(X).

If U <V, then there exists W € ClopUp(X) such that U < W < V.

Proof. Suppose U < V. Since X is L-continuous, con is representative, hence

V=cd| J{W|W<V}
= clU{cl conW | W C conV'} by Lemma 8.4(2)

= clU{conW | W C conV}.

Therefore, U C | J{con W | W C conV'}. Since U is compact, U C con W U---Ucon W, for
some Wy, ..., W,, CconV. Let W =W U---UW,,. Then W € ClopUp(X) and W C conV,
so W <V by Lemma 8.4(2). Also, conW; C con W because W; C W for all i <n (con is
monotone as it is a kernel). Thus, U C conW; U---UconW,, C conW, and so U <« W

again by Lemma 8.4(2). O

Remark 8.11. It is well known (see, e.g., [Joh82, p. 289]) that the way-below relation on a
continuous frame L is interpolating, meaning that a < b implies a < ¢ < b for some ¢ € L.

Lemma 8.10 provides an alternate proof of this result in the language of Priestley spaces.

The next lemma generalizes [PS00, Lem. 4.5]. It provides a method to construct Scott

upsets from suitably structured families of clopen upsets in continuous L-spaces.

Lemma 8.12. Let X be a continuous L-space. If U C ClopUp(X) is a down-directed family

such that U = ({conU | U € U}, then (U is a Scott upset.

Proof. Clearly (U € ClUp(X). To see that it is a Scott upset, by Lemma 5.2 it is enough

to show that (YU C clV implies (YU C V for every V € OpUp(X). By (1.2), clV is open.
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Therefore, since X is compact and (U is down directed, from (YU C clV it follows that
there is U € U with U C clV. Thus, conU C V by Lemma 8.4(3). Since U € U and

AU =conU | U € U}, we have (YU C conU. Consequently, YU C V. O

We now formalize the connection between the way-below relation and Scott upsets in

continuous L-spaces.

Proposition 8.13. Let X be an L-space and U,V € ClopUp(X).
(1) If there is a Scott upset F with U C F CV, thenU < V.

(2) If X is L-continuous, then the converse of (1) also holds.

Proof. (1) Suppose U C F C V for some F' € SUp(X), and let W € OpUp(X) be such that
V CclW. Then U C F C W since F' is a Scott-upset. Thus, U < V.
(2) Suppose U < V, so U C conV by Lemma 8.4(2). Use Lemma 8.10 to construct a

sequence {W,,} of clopen upsets such that

UL Wy < W, <V

for every n € N. Note that {IV,,} is down directed and () W,, = [ con W,,. Hence, F' := W,

is a Scott-upset by Lemma 8.12. Moreover, U C F' C V, as required. O

Assuming the Prime Ideal Theorem, every continuous frame is spatial (see, e.g., [Joh&2,

p. 311]). In [PS00, Prop. 4.6], an alternate proof of this fact is given using Priestley spaces:

Proposition 8.14. If X is a continuous L-space, then X is L-spatial.

Proof. To see that X is L-spatial, we need to show that loc X is dense in X. By Lemma 2.8(1),

it is enough to show that (U\ V)Nloc X # & for all U,V € ClopUp(X) with U\V # &. Let
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x € U\ V. Then = € clconU since con is representative. Therefore, (U \ V) NconU # &,
so there is a clopen upset W < U with (U \ V)NW # @. By Proposition 8.13(2), there is
a Scott-upset F' such that W C FF C U. Thus, (FNU)\V # @, so thereis z € (FNU)\ V.
Since F' is a Scott-upset, by Lemma 5.2(2) there is y € F Nloc X with y < z. But then
y€e U\ Vsince F CU and X \ V is a downset. Hence, (U \ V) Nloc X # @, proving that

loc X is dense in X. O

As a consequence, if X is a continuous L-space, then loc X is dense in X. We now
establish that a spatial L-space is L-continuous iff its localic part is locally compact. This
result relies on the Priestley analogue of the Hofmann—Mislove Theorem established in the

previous section (see Theorem 6.7).

Theorem 8.15. For a spatial frame L and its Priestley space X, the following conditions
are equivalent:

(1) L is continuous.

(2) X is L-continuous.

(3) loc X is locally compact.

Proof. (1)<(2) This is given by Theorem 8.6.
(2)=(3) Suppose that X is L-continuous, y € loc X, and ((a) is an open neighborhood

of y. Since ((a) = ¢(a) Nloc X (see Lemma 4.9(1)), we have

y € p(a) = cleon(a) = cl|_J{w(0) | () < p(a)}.

Because ]y is open, y € ¢(b) for some ¢(b) < ¢(a). Therefore, y € ¢(b) Nloc X = ((b). By
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Proposition 8.13(2), there is a Scott upset F' such that ¢(b) C F' C ¢(a). Thus,

y € ((b) C FnlocX C ((a).

By Theorem 6.7, F'Nloc X is compact. Consequently, loc X is locally compact.

(3)=-(2) Suppose that loc X is locally compact and a € L. We must show that con(a) is
dense in ¢(a). Let z € p(a) and W be an open neighborhood of x in X. By Lemma 2.8(1),
there exist U,V € ClopUp(X) such that x € U\ V' C W. Therefore, (U\ V)N p(a) # @.
Because L is spatial, loc X is dense in X (see Theorem 4.4), so (U \ V) N ((a) # @, and
hence there is y € (U \ V) N ((a). Since loc X is locally compact, there is b € L and a
compact saturated K C loc X such that y € ((b) € K C ((a). By Theorem 6.7, 1K is a
Scott upset. Thus, TK is closed, and so ¢(b) = cl((b) C 1K by Remark 4.10(2). Therefore,
o(b) € 1K C ¢(a). Then ¢(b) < ¢(a) by Proposition 8.13(1). Thus, y € con(a) by

Lemma 8.4(2). This implies that (U \ V) N con(a) # &, so con(a) is dense in ¢p(a). O

Theorem &.15 establishes a one-to-one correspondence between continuous frames, con-
tinuous L-spaces, and locally compact sober spaces. We now extend this correspondence
to the corresponding categorical equivalences by relating proper L-morphisms and proper
continuous maps.

The following result shows that in continuous L-spaces, con can be described in terms
of the localic part. This observation plays a key role in Proposition 8.17, which provides

conditions for L-morphisms to be proper in the setting of continuous L-spaces.

Lemma 8.16. Let X be a continuous L-space. Then conU = (U NlocX) for every

U € ClopUp(X).
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Proof. First, suppose that x € conU. Then there is V' € ClopUp(X) with z € V <« U.
By Proposition 8.13(2), there is a Scott upset F' with V' C F C U. Therefore, there is
y € FNlocX with y < z. Thus, x € (U Nloc X).

Conversely, suppose that z € 1(U Nloc X). Then there is y € U Nloc X with y < x.
Since con is representative, U = clconU, so Ty C clconU. Thus, since Ty is a Scott upset

and conU is an open upset, z € Ty C conU by Lemma 5.2(3). H

Proposition 8.17. For an L-morphism f: X — Y between continuous L-spaces, the fol-
lowing conditions are equivalent:

(1) f is proper.

(2) AU NlocY) =1(f1U) Nloc X) for all U € ClopUp(Y).

(3) f~'(ty) is a Scott upset of X for all y € locY .

(4) f~YF) is a Scott upset of X for all Scott upsets F of Y.

(5) Jf(x)nlocY C [f(lxNlocX) forallx € X.

Proof. (1)=(2) Suppose x € f'H(UNlocY). Then x € f~(conU) by Lemma 8.16. Since f
is proper, z € con f~!(U), and using Lemma 8.16 again yields x € 1(f~'(U)Nloc X). For the
reverse inclusion, suppose x € 1(f~(U) Nloc X). Then z > y for some y € f~1(U) Nloc X.
Therefore, f(z) > f(y) and f(y) € U. By Lemma 4.11(1), f(locX) C locY. Thus,
fly) eUnNlocY,so f(z) € H(Y NlocY), and hence z € f~1(Y NlocY).

(2)=(3) Since 1y is a closed upset, 1y = ({U € ClopUp(Y) | y € U} by Lemma 2.8(3).

Therefore, since y € locY’, we have Ty = ({T(U NlocY) | y € U € ClopUp(Y)}. Thus, by
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(2) and Lemma 8.16,

(/') |y €U € ClopUp(Y)} = (ﬂ{U € ClopUp(Y) |y € U})
= (W NlocY) | y € U € ClopUp(¥)})
=W/ MU NlocY) |y € U € ClopUp(Y)}
=({t(f ' (U)nlocX) | y € U € ClopUp(Y)}

=(Ycon f~'(U) |y € U € ClopUp(Y)}.

Consequently,

f ) =W/ (U) | y € U € ClopUp(Y)} = [ \{con f~(U) | y € U € ClopUp(Y)}

is a Scott upset by Lemma &8.12.

(3)=(4) Let F be a Scott upset of Y. By (3),

min f~!(F) = min f* U{Ty | y € min F'}
— win{_J{/~(19) | v € min F}

C U{minffl(Ty) | y € min F'} C loc X.

Thus, f~'(F) is a Scott upset of X.

(4)=-(5) Suppose y» € |f(x) NlocY. Then Ty, is a Scott upset of Y, so f~1(1y) is a
Scott upset of X by (4). Since x € f~}(1ys), there is y; € min f~!(ty,) such that y; < .
Therefore, yo < f(y1) and y; € {x Nloc X. Thus, y» € Lf(Jz Nloc X).

(5)=(1) Let = € f~'(conU). Then f(z) € conU, and Lemma 8.16 implies that
f(z) € 1(U NlocY). Therefore, thereis y € [ f(z)N(UNlocY). By (5), y € Lf(lxNloc X),
so there is 3 € Lz Nloc X with y < f(y/). Thus, f(y') € U, and hence v’ € f~1(U) Nloc X.
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Consequently, Lemma 8.16 yields that

r €N fHU)NlocX) = con(f(U)NlocX) C con f(U). O

The proposition shows that proper L-morphisms between continuous L-spaces are pre-
cisely those that pull Scott upsets back to Scott upsets. In view of Theorem 6.7, this is the
Priestley analogue of the fact that proper continuous maps between locally compact sober
spaces are precisely those that pull compact saturated sets back to compact saturated sets
(see Remark 7.6(1)).

We now prove that proper frame homomorphisms between frames, proper L-morphisms
between their Priestley spaces, and proper continuous maps between their localic parts are

in a one-to-one correspondence.

Theorem 8.18. Let h: L1 — Lo be a frame homomorphism between continuous frames,
f: Xy — Xy its dual L-morphism, and g = Loc(f): loc Xo — loc(Xy) the restriction of f.
The following are equivalent:

(1) h: Ly — Ly is a proper frame homomorphism.

(2) f: Xo — Xj is a proper L-morphism.

(3) g: loc Xy — loc Xy is a proper continuous map.

Proof. (1)<(2) This follows from Proposition 8.7.

(2)=-(3) We verify that g satisfies Definition 7.4(2). By Remark 7.6(1), it is sufficient to
show that ¢g~'(U) is compact for each compact saturated U in loc X;. Since U is compact
saturated in loc X7, we have that 1U is a Scott upset of X; by Theorem 6.7. Hence, f~!(1U)

is a Scott upset of X, by Proposition 8.17(4). Thus, f~'(1U) Nloc X, is compact saturated
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in loc X5 by Theorem 6.7. But f~'(1U) Nloc Xy = g~ (U) because U is saturated in loc X,
and ¢ is the restriction of f to loc Xy. Therefore, g7'(U) is compact.

(3)=(2) By Proposition 8.17(3), it is enough to show that f~!(1y) is a Scott upset of X,
for each y € loc X;. Since y € loc X7, we have that 1y is a Scott upset of X1, so TyNloc X is
compact saturated in loc X; by Theorem 6.7. Because g is proper, g~ (TyNloc X;) is compact
saturated in loc X». Hence, F := t¢~!(1y Nloc X}) is a Scott upset of Xy by Theorem 6.7.
Therefore, it suffices to show that f~'(1y) = F.

Clearly ' C f~1(ty). For the reverse inclusion, suppose ¢ F. Then there exists
D € ClopDn(X5) such that z € D and D N g '(ty Nloc X;) = @ (see Lemma 2.8(3)).
Hence, y ¢ Lg(DNloc X3). Since g is proper, Lg(D Nloc X5) Nloc X is closed in loc X7, and
so Jg(D Nloc Xs) Nloc X; = ENlocX; for some E € ClopDn(X;). Therefore, y ¢ E and
g(DNlocXy) C E, so lclg(DNlocXs) C E. Because X; and X, are L-continuous, they

are L-spatial by Proposition 8.14. Thus,

Lf(D)=]fc(DnNlocXy) =lclf(DNlocXy) =]clg(DNlocXy) CE,

where the second equality holds because f is a closed map (hence f commutes with closure,

see, e.g., [Fng89, p. 35]). Consequently, y & | f(D), and hence = & f~'(1y). ]

Corollary 8.19. Suppose X and Y are continuous L-spaces, and let g: loc X — locY be a
proper continuous map between their localic parts. Then there exists a proper L-morphism

f: X =Y extending g.

Proof. By Proposition 4.18, there is an L-morphism f : X — Y extending g. Therefore,

Loc(f) =g, and so f is proper by Theorem 8.18. ]
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We now prove that the categories of continuous L-spaces and locally compact sober spaces

are equivalent.

Theorem 8.20. ConlPries is equivalent to LKSob.

Proof. By Theorem &8.15, the restriction of L oc is well defined on objects. By Theorem 8.18,
the restriction of Loc is also well defined on morphisms. This together with Corollary 8.19
shows that Theorems 4.15 and 4.19 apply, yielding that -Loc: ConLPries — LKSob is essen-

tially surjective, full, and faithful. O]

This equivalence, together with the previously established duality between continuous

frames and continuous L-spaces, provides an alternative proof of Hofmann—-Lawson duality.

Corollary 8.21 (Hofmann-Lawson). ConFrm is dually equivalent to LKSob.

Proof. Combine Theorems 8.9 and 8.20. ]

This concludes our proof of Hofmann—Lawson duality through Priestley spaces, offering
a new perspective on this fundamental result in pointfree topology via, among other things,

the continuous kernel con.

9 Priestley spaces of stably continuous frames: charting stability

To derive the two dualities for stably continuous frames (see Theorem 7.7(2,3)), we
first characterize stability of the way-below relation < in the language of Priestley spaces.
Stability strengthens continuity by requiring that < is preserved under binary meets.

In the previous section, we described continuity of a frame in terms of the kernel con

being representative in its Priestley space. Here, we extend this approach by showing that
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stability can also be characterized in terms of this kernel, specifically by how it interacts
with intersections. This leads to a description of the Priestley spaces of stably continuous

frames.

Lemma 9.1. Let L be a continuous frame and X its Priestley space. For a,b € L, we have

con(a) Ncon(b) = con(a A b) iff c < a,b implies c < a Ab for all c € L.

Proof. First, suppose that con(a) N con(b) = con(a A b). Let ¢ € L with ¢ < a,b. Then
¢(c) C con(a), con(b) by Lemma 8.4(5). Therefore, ¢(c) C con(a) N con(b) = con(a A b).
Thus, ¢ < a A b using Lemma 8.4(5) again.

For the converse, suppose that ¢ < a, b implies ¢ < aAb for all ¢ € L. Then Lemma 8.4(5)

gives that for all ¢ € L,

o(c) < p(a), p(b) implies p(c) < p(a) N p(d). (II1.2)

Since con is monotone (as it is a kernel), con(a A b) C con(a) N con(b). For the reverse
inclusion, let € con(a) N con(b). Then there are d,e € L with z € p(d) < ¢(a) and
x € p(e) < p(b). Let ¢ = dAe. Then z € ¢(c) < p(a), p(b). Consequently, by (I111.2),
o(c) < p(a) N@(b) = p(a Ab). Therefore, z € con(a A b) by Lemma 8.4(5). Thus,

con(a) N con(b) = con(a A b). O

Recall (see Definition 8.1(3)) that we defined a kernel to be stable if it commutes with
binary intersections. The previous lemma motivates this definition and it aligns with the
idea that stability is the fact that < is preserved under binary meets. Recall also that an

L-space X is L-compact if min X C loc X (see Definition 5.10).
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Definition 9.2.
(1) An L-space is L-stably continuous if it is L-continuous and con is stable.
(2) An L-space is L-stably compact if it is L-stably continuous and L-compact.
(3) Let StCLPries be the full subcategory of ConLPries consisting of stably continuous L-
spaces.
(4) Let StKLPries be the full subcategory of StCLPries consisting of stably compact L-

spaces.

Remark 9.3. In [BM23], stably continuous L-spaces are defined to be continuous L-spaces
X such that SUp(X) is closed under binary intersections. In Lemma 9.6, we will see that

for continuous L-spaces, this property and the condition that con is stable are equivalent.

The following theorem formalizes the connection between stably continuous and stably

compact frames and the L-spaces of the same name.

Theorem 9.4. Let L be a frame and X 1its Priestley space.
(1) L is a stably continuous frame iff X is a stably continuous L-space.

(2) L is a stably compact frame iff X is a stably compact L-space.

Proof. (1) Apply Theorem 8.6 and Lemma 9.1.

(2) This follows from (1) and Theorem 5.8(2). O

As a consequence, we obtain the following dual equivalences:

Corollary 9.5.
(1) StCFrm is dually equivalent to StCLPries.
(2) StKFrm is dually equivalent to StKLPries.
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Proof. (1) Restrict Theorem 8.9 to the full subcategories StCFrm and StCLPries using The-
orem 9.4(1).

(2) Similar to (1), but now use Theorem 9.4(2). O

Next, we establish the connection between stably continuous and stably compact L-
spaces and their topological counterparts StLKSp and StKSp. The following lemma provides

a characterization of stability in terms of Scott upsets.

Lemma 9.6. Let X be a continuous L-space.
(1) For every Scott upset F', we have F' = ({conU | FF C U € ClopUp(X)}.

(2) SUp(X) is closed under binary intersections iff con is stable.

Proof. (1) Suppose FF C U € ClopUp(X). Since X is L-continuous, con is representative,
and hence F' C clconU. By Lemma 8.4(1), conU € OpUp(X). Therefore, F' C conU by
Lemma 5.2(3). Thus, F' C [ {conU | F C U € ClopUp(X)}. For the reverse inclusion, by

Lemma 2.8(3), we have
F=({U|FCU e ClopUp(X)} 2 J{conU | F C U € ClopUp(X)}.

(2) Suppose SUp(X) is closed under binary intersections and U,V € ClopUp(X). Since

conU is an open upset for each U (see Lemma 8.4(1)), it suffices to show that
W C con(U) Ncon(V) iff W C con(UNV)

for each W € ClopUp(X) (see Lemma 2.8(2)). By Lemma 8.4(2), W C con(U) N con(V) iff
W <« U and W <« V. By Proposition 8.13, this happens iff there are F,G € SUp(X) such
that W C FFC U and W C G C V. By assumption, the latter is equivalent to the existence
of a Scott upset H such that W C H C U N V. By invoking Proposition 8.13 again, this is
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equivalent to W < UNV, which in turn is equivalent to W C con(U NV') by Lemma 8.4(2).
Thus, con is stable.
Conversely, suppose con is stable and let F,G € SUp(X). If U, V, W range over clopen

upsets of X, by (1) we have

FNG=(conU | FCU}N(){conV |G CV}
:ﬂ{conUﬂconV\FgU,GQV}
=(Neon(UNV) | FCU,GCV}
=(conW | FNG C W}

C(YWI|FNGCW}=FnG,

where the last equality follows from Lemma 2.8(3). For the second to last equality it is
enough to observe that by compactness, F'N G C W is equivalent to U NV C W for some
clopen upsets U O F and V O . Thus, FFN G is a Scott upset by Lemma 8.12, completing

the proof. n

The following theorem establishes a precise relationship between stably continuous L-

spaces and their localic parts.

Theorem 9.7. Let X be a spatial L-space.
(1) X is a stably continuous L-space iff loc X is stably locally compact.

(2) X is a stably compact L-spaces iff loc X is stably compact.

Proof. (1) Suppose X is L-stably continuous. By Theorem 8.15, loc X is locally compact.
Let K and J be compact saturated in loc X. Then 1K and 1J are Scott upsets by The-
orem 6.7. Since con is stable, 1K N 1J is a Scott upset by Lemma 9.6(2). Therefore,
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KnNnJ=1KnN1JNlocX is compact saturated by Theorem 6.7.

Conversely, suppose that loc X is stably locally compact. By Theorem 8.15, X is L-
continuous. Let U,V € ClopUp(X). Since con is monotone (as it is a kernel), it suffices
to show that conU NconV C con(UNV). Let 2 € conU NconV. Then there exist
U, V" € ClopUp(X) containing z such that U’ < U and V' < V. By Proposition 8.13(2)
(X is L-continuous), there are Scott upsets F, G with U’ C F C U and V' C G C V. By
Theorem 6.7, F'Nloc X and G Nloc X are compact saturated. Since loc X is stably locally
compact, F'N G Nloc X is compact saturated. Hence, 1(F NG Nloc X) is a Scott upset by

Theorem 6.7. Moreover, because FF' NG C U NV, we have

TEFNGNlocX)CHUNVNlocX)=con(UNV)

by Lemma 8.16. Therefore, since X is L-spatial,

relU NV =c(UNV' NlocX) CHFNGNIlocX) C con(UNV).

(2) This follows from (1) by applying Lemma 5.12. O

These results yield the following equivalences:

Corollary 9.8.
(1) StCLPries is equivalent to StLKSp.

(2) StKLPries is equivalent to StKSp.

Proof. (1) Restrict Theorem 8.20 to the full subcategories StCLPries and StLKSp using The-
orem 9.7(1).

(2) This follows from (1) using Theorem 9.7(2). O
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As a consequence of Corollaries 9.5 and 9.8, we obtain the following well-known dualities

for stably continuous frames (see Theorem 7.7(2,3)):

Corollary 9.9.
(1) StCFrm is dually equivalent to StLKSp.

(2) StKFrm is dually equivalent to StKSp.

This completes our charting of stability in Priestley spaces, showing that stably continu-
ous and stably compact frames correspond precisely to continuous L-spaces where the kernel

con is stable.

10 Priestley spaces of compact regular frames: the path to Isbell

In this section, we provide a new proof of Isbell duality between the categories KRFrm of
compact regular frames and KHaus of compact Hausdorff spaces using Priestley duality. The
Priestley spaces of compact regular frames were previously described in [BGJ16]. Here, we
extend this description by establishing the equivalence between these L-spaces and compact
Hausdorff spaces.

A fundamental ingredient in this correspondence is the well-inside relation <, which
provides the formulation of regularity in frames (see Definition 7.1(2)). A characterization
of this relation in terms of Priestley spaces was given in [BGJ16, Sec. 3]. Similar to how
the kernel con was introduced to characterize continuity (see Definition 8.2), the well-inside
relation induces the notion of regular part, which plays an analogous role in describing

regularity in the Priestley setting.
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Definition 10.1. Let X be an L-space.
(1) For U,V € ClopUp(X), we write U < V if JU C V.

(2) The regular part of U is defined by
regU = U{V € ClopUp(X) |V < U}.
When U = ¢(a), we write reg(a) for regU.

This definition is motivated by the following result, which expresses the regular part in

terms of upsets and downsets.

Lemma 10.2 ([BGJ106, Sec. 3]). Let X be an L-space. For each U € ClopUp(X) we have
regl = X \ 1(X \ U).
In particular, if X is the Priestley space of a frame L, then for a,b € L,

a < b iff p(a) < (b) iff p(a) C reg(b).

The next result shows that reg naturally fits within our language of kernels, reinforcing
the rigidity of this framework. Unlike con, the regular part is always stable, which aligns

with the fact that the well-inside relation is preserved under binary intersections.
Lemma 10.3. Let X be an L-space. Then reg: ClopUp(X) — OpUp(X) is a stable kernel.

Proof. That reg is a kernel follows immediately from the definition. To see that it is stable,

let U,V € ClopUp(X). By Lemma 2.8(2) it suffices to show that

W CregUNregV iff W Creg(UNYV)
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for each W € ClopUp(X). We have

W CregUNregV <= W CreglU and W C regV
<— [WCUand [WCV
— [WCuUnvV

< W Creg(UNV). O

In our terminology, a frame L is regular iff reg is representative in the Priestley space
of L (see [BGJ16, Lem. 3.6]). We will now establish several consequences of reg being
representative, which in the L-spatial case characterize reg being representative. To do so,

we first prove the following result.

Lemma 10.4. Let X be an L-space, x € X, Z C X, and U € ClopUp(X).
(1) z € regU iff Tz C U.

(2) Z CregU iff 1Z C U.

Proof. (1) By Lemma 10.2,

reregl <= x ¢ [NX\U)
— e NPNX\U)=0
— rn(X\U)=o

— [Tz CU.

(2) This follows from (1) since {12 = J{{1z | z € Z}. O
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Proposition 10.5. Let X be an L-space and U € ClopUp(X). The following three condi-
tions are equivalent:

(1) UNlocX CreglU.

(2) For each y € U NlocX there are disjoint V,W € ClopUp(X) such that y € V and

X\UCW.

(3) IM(UNlocX) CU.
Moreover, the following condition implies conditions (1)—(3).

(4) regU is dense in U.

Furthermore, if X is L-spatial, all four conditions are equivalent.

Proof. (1)=(2) Let y € UNlocX. By (1), y € regU. Hence, there exists V' € ClopUp(X)
such that y € V and [V C U. By Lemma 3.4(1), |V € ClopDn(X). Therefore, W := X \ |V
is a clopen upset disjoint from V' such that X \ U C W.

(2)=(3) Let = € {1(U Nloc X). Then there is y € U Nloc X such that z € {1y. By (2),

there are disjoint V, W &€ ClopUp(X) such that y € V and X \ U C W. Thus,

zelyCLVCX\WCU.

(3)=(1) Apply Lemma 10.4(2).

Therefore, conditions (1)—(3) are equivalent.

(4)=(1) Let y € UNlocX. Then y € clregU by (4). Since |y is open and regU is an
upset, we conclude that y € regU.

Let X be L-spatial.

(1)=(4) From U Nloc X C regU it follows that cl(U Nloc X) C clregU. Since X is
L-spatial, cl(U Nloc X) = U (see Theorem 4.4). Thus, regU is dense in U. O
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Remark 10.6. Proposition 10.5 provides a set of conditions that characterize regularity in
terms of L-spaces. The second condition is especially reminiscent of the usual definition
of regularity in topological spaces. However, while the first three conditions are generally
equivalent, the final condition, that regU is dense in U, is in general stronger. This means
that reg being representative (which is equivalent to the corresponding frame being regular)
is stronger than the first three conditions holding for arbitrary clopen upsets. Nonetheless,

in the spatial case the conditions do become equivalent to regularity.

Since regularity is captured in Priestley spaces by the kernel reg, it is natural to define

regular L-spaces in terms of reg being representative.

Definition 10.7.
(1) An L-space X is L-regular if reg is representative.

(2) Let KRLPries be the full subcategory of KLPries consisting of compact regular L-spaces.

The following theorem, originally established in [BG.J16, Sec. 3] (see also [PS88, Sec. 3]),

formalizes the connection between regularity in frames and L-spaces.

Theorem 10.8. Let L be a frame and X its Priestley space.
(1) ([BGJL6, Lem. 3.6]) L is regular iff X is L-regular.

(2) ([BGJ16, Thm. 3.9]) L is compact regular iff X is L-compact and L-reqular.

As a consequence, we obtain the following dual equivalence.

Corollary 10.9. KRFrm is dually equivalent to KRLPries.

Proof. Apply Theorems 3.2 and 10.8(2). O
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Next, we establish the connection between compact regular L-spaces and compact Haus-
dorff spaces. The following result provides an analogue of the well-known fact that every

compact regular frame is spatial (see, e.g., [Joh82, p. 30]).
Lemma 10.10. If X is a compact reqular L-space, then X is L-spatial.

Proof. By Lemma 2.8(1), it is enough to show that U \ V' # @ implies (U \ V) Nloc X # @
for all U,V € ClopUp(X). Since X is L-regular, U = clregU. Therefore, U\ V # @& implies
regU\V # &. Let z € regU \ V. Because z € regU, there exists W € ClopUp(X)
containing z such that |W C U. By Lemma 2.9(2), there is y € min(JW) with y < z.
Consequently, y € [W C U and y € X \ V since X \ V is a downset. Moreover, y € loc X

because y € min X and min X C loc X since X is L-compact. O]

The next theorem relates regularity and compactness in L-spaces to their localic parts.

Theorem 10.11. Let X be an L-space.
(1) If X is L-regular, then loc X is regular.

(2) If X is L-compact and L-regular, then loc X is compact reqular.

If X is L-spatial, then the converses of (1) and (2) also hold.

Proof. (1) First, suppose X is L-regular. Let y € loc X and F' be a closed subset of loc X
with y ¢ F. Then loc X \ F' is an open subset of loc X containing y. Therefore, there exists
U € ClopUp(X) with UNloc X = loc X'\ F. Since X is L-regular, reg U is dense in U. Thus,
by the implication (4)=-(2) in Proposition 10.5, there exist disjoint V, W € ClopUp(X) such
that y € V and X \ U C W. Hence, V Nloc X and W Nloc X are disjoint open subsets of
loc X such that y € V Nloc X and F =loc X \ U C W NlocX. This implies that loc X is
regular.
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For the converse, suppose X is L-spatial and loc X is regular. To see that reg is repre-
sentative, let U € ClopUp(X) and y € U Nloc X. Since loc X is regular, loc X \ U is closed
in loc X, and y & loc X \ U, there exist V, W € ClopUp(X) such that VN W Nloc X = &,

y €V, and loc X \ U C W Nnloc X. Therefore, since X is L-spatial,

VAW =c(VNnlocX)Ncd(WNlocX)=cl(VNWNlocX) =clog =0,

where the second equality follows from Lemma 4.16(3). Moreover, loc X \U C WNloc X im-
plies that X \ U C W because X is L-spatial. Thus, regU is dense in U by Proposition 10.5.
Consequently, reg is representative.

(2) This follows from (1) and Lemma 5.12. The converse follows from the converse of (1)

and Lemma 5.12. OJ

As a consequence, we obtain the following equivalence.

Corollary 10.12. KRLPries is equivalent to KHaus.

Proof. Apply Corollary 4.20, Lemma 10.10, and Theorem 10.11(2). ]

We now derive Isbell duality as an immediate consequence of Corollaries 10.9 and 10.12.

Corollary 10.13 (Isbell duality). KRFrm is dually equivalent to KHaus.

As discussed in the introduction of this chapter, KRFrm is a full subcategory of StKFrm.
We now work towards showing that KRLPries is a full subcategory of StKLPries. To do so,
we compare con with reg, which serves as a parallel to the comparison between compact

and complemented elements in frames.
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For two kernels kerj,kery: ClopUp(X) — OpUp(X) we write ker; < kers provided
ker; U C kery U for each U € ClopUp(X). We also write ker; = ker; if ker; < ker, and

kery < ker;.

Lemma 10.14. Let X be an L-space.
(1) X is L-compact iff reg < con.
(2) If X is L-regular, then con < reg.

(3) If X is L-compact and L-regular, then reg = con.

Proof. (1) First, suppose that X is L-compact and U € ClopUp(X). We show that V < U
implies V' < U for every V € ClopUp(X). Let U C clW for some W € OpUp(X). Then
UnNlocX C W by Lemma 4.16(1). Moreover, since |V C U, we have min({V) C U.

Therefore, min({V) C U Nloc X because X is L-compact. Thus,

V C1tmin({V) C U NlocX) C W.

Consequently, V <« U, and hence regU C conU.

Conversely, since reg X = X (see Lemma 10.2), reg X C con X implies con X = X,
so X is a Scott upset by Lemma 8.4(4). Therefore, min X C loc X, showing that X is
L-compact.

(2) Since reg is representative, clregU = U. Therefore, conU C regU by Lemma 8.4(3).

(3) This follows from (1) and (2). O

Following [BGJ16, p. 377], we call a subset of a poset a biset if it is both an upset and a
downset. We will see in the next section that complemented elements of a frame correspond

to clopen bisets of its Priestley space. By Theorem 5.8(1), compact elements correspond to
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clopen Scott upsets. Thus, the comparison between complemented elements and compact
elements can also be done by comparing clopen bisets and clopen Scott upsets. In this sense
the next result is a generalization of the comparison since it considers arbitrary closed bisets

and Scott upsets.

Lemma 10.15. Let X be an L-space. If X is L-compact, then
(1) each closed biset is a Scott upset.
If X s L-reqular, then
(2) each Scott upset is a biset,
(3) loc X C min X.
If X s L-compact and L-reqular, then
(4) closed bisets are exactly Scott upsets,

(5) min X = loc X.

Proof. (1) Since X is L-compact, min X C loc X. Therefore, for each closed biset F', we
have min F' C min X C loc X. Thus, F is a Scott upset.

(2) Suppose F'is a Scott upset. Let x € [ F. Then there is z € F' with < z. Since F is
a Scott upset, there is y € F'Nloc X with y < z. If y £ z, then by Priestley separation (see
(I.1)), there exists U € ClopUp(X) with y € U and = ¢ U. Since X is L-regular, we have
(U Nloc X) C U by the implication (4)=-(3) in Proposition 10.5. Therefore, |1y C U, so
x € U, a contradiction. Thus, we must have y < x, so x € F', and hence F' is a biset.

(3) Let y € loc X. Then 1y is a Scott upset, so Ty is a downset by (2). Thus, y € min X.

(4) This follows from (1) and (2).

(5) Because X is L-compact, min X C loc X. The reverse inclusion follows from (3). O
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Remark 10.16. The frame-theoretic interpretation of Lemma 10.15(5) is that in a compact
regular frame, the minimal prime filters are precisely the completely prime filters. This was

first observed in [BGJ16, Lem. 5.2 and 5.3].
Proposition 10.17. FEach compact reqular L-space is L-stably compact.

Proof. Let X be a compact regular L-space. Then reg is representative and stable (see
Lemma 10.3). By Lemma 10.14(3), reg = con, so con is representative and stable because
reg is. Therefore, X is stably L-continuous. Consequently, X is L-stably compact since X

is L-compact. O

The next result compares how L-regularity and L-compactness interact with L-morphisms.

In particular, it shows that a compact-to-regular L-morphism must be proper.

Proposition 10.18. Let f: X — Y be an L-morphism between L-spaces.
(1) f'(regU) C reg f~1(U) for each U € ClopUp(Y).

(2) If X is L-compact and Y is L-regular, then f is proper.

Proof. (1) Suppose x € f~!(regU). Then f(x) € regU. Therefore, |1f(x) C U by
Lemma 10.4(1). Since f is order-preserving, we obtain f({tz) C U. Thus, |tz C f~YU),
and so x € reg f~}(U) by applying Lemma 10.4(1) again.

(2) Let U € ClopUp(Y). By Lemma 10.14(1), reg < con in X, and by Lemma 10.14(2),

con < reg in Y. Therefore, by (1),

f(conU) C f(regU) Creg f ' (U) C con f1(U).

Thus, f is proper. O]
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Remark 10.19. Proposition 10.18(2) corresponds to the well-known fact that every frame

homomorphism from a compact frame to a regular frame is proper.
Combining Propositions 10.17 and 10.18(2), we obtain the following:

Theorem 10.20. KRLPries is a full subcategory of StKLPries.

We thus arrive at Fig. 7, completing our journey from Hofmann-Lawson to Isbell.

ConFrm s ConlPries «+—22Y + | KSob

A A

StCFrm 220 StCLPries PN StLKSp

A N
A

; 9.5(2) C. 9.8(2) -
StKFrm ¢~y StKLPries «+——— StKSp

N AN "

J J

KRFrm ¢~ KRLPries «+—22 » KHaus

Figure 7: Equivalences and dual equivalences between various categories of continuous

frames, continuous L-spaces, and locally compact sober spaces.
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Chapter IV
Finding Priestley and Stone in
algebraic frames

Building on the previous chapter’s framework for continuous frames, this chapter develops
Priestley duality for algebraic frames and demonstrates its connection to well-known dualities
in pointfree topology through alternative proofs.

Recall that a complete lattice is algebraic if every element is a join of compact elements.
Algebraic lattices arise naturally in various contexts. For example, the lattice of congruences
of any algebra is algebraic, and up to isomorphism, every algebraic lattice arises in this way
(see, e.g., [BS&1]). By a well-known result of Nachbin [Nac19] (see also [B1I18]), algebraic
lattices are precisely the ideal lattices of join-semilattices. By [Grill, Lem. 184], the ideal
lattice of a join-semilattice is distributive iff the join-semilattice is distributive. Since alge-
braic frames are precisely the distributive algebraic lattices (see, e.g., [Grall, p. 165]), it
follows that they correspond exactly to the ideal lattices of distributive join-semilattices.

Algebraic frames have been widely studied in pointfree topology and domain theory (see,
e.g., [GHIKT03, PP12]). A well-developed duality theory exists for the category AlgFrm of
algebraic frames and its various subcategories, including the categories of arithmetic frames
(also known as M-frames), coherent frames, and Stone frames. Indeed, a frame L is algebraic
iff it is the frame of opens of a compactly based sober space X (see, e.g., [GHI<T03, p. 423]).
Furthermore, L is arithmetic iff X is stably compactly based, L is coherent iff X is spectral,

and L is a Stone frame iff X is a Stone space (see Section 11 for details).
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The duality theory for algebraic frames can be seen as a restriction of the well-known
Hofmann—Lawson duality. The relationship between categories of continuous frames and
algebraic frames is illustrated in Fig. 8.

ConFrm +—— StCFrm +—— StKFrm +—— KRFrm

AlgFrm «—— AriFrm <—— CohFrm <—— StoneFrm

Figure 8: Inclusion relationships between categories of continuous and algebraic frames.

In the previous chapter, we established Priestley duality for ConFrm and its subcategories
listed in the first row of Fig. 8. The resulting dual equivalences are summarized in Fig. 7
at the end of the thesis. In this chapter, we further develop Priestley duality for AlgFrm
and its subcategories listed in the second row of Fig. 8. To achieve this, we characterize the
Priestley spaces of algebraic, coherent, arithmetic, and Stone frames.

To describe these frames in the language of Priestley spaces, we continue the approach
of defining appropriate kernels (see Definition 8.1(1)). We introduce the algebraic kernel
(alg), which characterizes algebraic frames, and the zero-dimensional kernel (zer), which
describes zero-dimensional frames. These kernels can be compared to con and reg from the
previous chapter, and we will analyze their relationships in detail. This highlights structural
parallels among these different classes of L-spaces, and hence their corresponding frames.

The main results of this chapter establish new categories of L-spaces that are dually
equivalent to the categories algebraic frames and are equivalent to important categories of
topological spaces, such as spectral and Stone spaces.

The chapter is organized as follows. In Section 11, we describe the above categories of
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algebraic frames and their dual compactly based sober spaces. In Section 12, we introduce
the kernel alg and characterize Priestley spaces of algebraic frames. This leads to a new
proof of the duality between AlgFrm and KBSob. In Section 13, we characterize the Priestley
spaces of arithmetic and coherent frames, yielding a new proof of their duality with compactly
based spaces. Finally, in Section 14, we use the kernel zer to describe zero-dimensionality
and characterize the Priestley spaces of Stone frames. We conclude by relating the Priestley
spaces of coherent and Stone frames to Priestley duality for bounded distributive lattices

and Stone duality for Boolean algebras.

11 Compactly based sober spaces and algebraic frames

In this section, we provide the necessary definitions and introduce the categories of alge-
braic frames and compactly based spaces mentioned in the introduction to this chapter. We
then state the known dualities for these categories, as introduced earlier.

Let L be a frame. We write K(L) for the collection of compact elements of L (elements
a satisfying a < a) and C(L) for the collection of complemented elements of L (elements a

satisfying a V a* = 1).

Definition 11.1.
(1) ([PP12, p. 142]) A frame L is algebraic if every element is a join of compact elements,
ie,a=\{beK(L)|b<a}forallaclL.
(2) ([Joh82, p. 64]) A frame homomorphism h: L — M is coherent if it preserves compact
elements, i.e., a € K(L) implies h(a) € K(M).

(3) Let AlgFrm be the category of algebraic frames and coherent frame homomorphisms.
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Remark 11.2. Every algebraic frame is continuous, and a frame homomorphism between
coherent frames is coherent iff it is proper (see, e.g., [Ban&1, p. 4]). Consequently, AlgFrm is

a full subcategory of ConFrm.

Definition 11.3.
(1) ([GHIT03, p. 117]) A frame L is arithmetic if it is algebraic and the way-below relation
< is stable.

(2) Let AriFrm be the full subcategory of AlgFrm consisting of arithmetic frames.

Remark 11.4.
(1) In [GHI 03], alattice is defined as arithmetic if the binary meet of compact elements is
compact. For algebraic lattices this is equivalent to < being stable (see, e.g. [GHIXT03,
Prop 1-4.8]).

(2) Arithmetic frames are also known as M-frames (see, e.g., [IM09]).

Definition 11.5.
(1) ([Joh82, p. 63-64]) A frame is coherent if it is both arithmetic and compact.

(2) Let CohFrm be the full subcategory of AriFrm consisting of coherent frames.

The next definition is well known (see, e.g., [Joh82, Bang9, Jakl3]). We thank Joanne
Walters-Wayland for informing us that the terminology of Stone frames originated from

Banaschewski’s University of Cape Town lecture notes (1988).

Definition 11.6.
(1) A frame L is zero-dimensional if every element is a join of complemented elements,

ie,a=\{beC(L)|b<a} foralac L.
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(2) A Stone frame is a zero-dimensional frame that is also compact.

(3) Let StoneFrm be the full subcategory of Frm consisting of Stone frames.

Remark 11.7. StoneFrm is clearly a full subcategory of KRFrm. Moreover, since every frame
homomorphism preserves the well-inside relation <, and < coincides with < in compact

regular frames, it follows that StoneFrm is a full subcategory of CohFrm.

Fig. 8 illustrates the relationship between categories of algebraic and continuous frames.
See Table 2 for an overview of all the categories of frames defined in this thesis. We now
consider the corresponding categories of topological spaces.

Recall that a topological space is compactly based if it has a basis of compact opens (see
Item (1)) and that a continuous map is coherent if it pulls compact opens back to compact

opens (see Definition 2.14).

Definition 11.8.
(1) Let KBSob denote the category of compactly based sober spaces with coherent contin-
uous maps.
(2) A compactly based space X is stably compactly based if it is sober and the intersection
of any two compact open sets is compact.
(3) Let StKBSp be the full subcategory of KBSob consisting of stably compactly based

spaces.

Recall the definitions of spectral spaces (Definition 2.12) and Stone spaces (Definition 2.6)

from Chapter I.
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Remark 11.9.

(1) Spectral spaces are stably compactly based spaces that are also compact. Therefore,
Spec is a full subcategory of StKBSp.

(2) KBSob is a full subcategory of LKSob since a continuous map between compactly based
sober spaces is coherent iff it is proper. One implication is clear. The other follows
from the fact that in a compactly based space X, every compact saturated set is an
intersection of compact open sets. To see this, let K C X be compact saturated. It
suffices to show that for every x &€ K, there exists a compact open set U such that
K CUandz ¢ U. Since X is compactly based for each y € K there is a compact open
set U, such that y € U, and z ¢ U,. Thus, K C |J{U, | y € K}. By the compactness
of K and the fact that finite unions of compact sets remain compact, there exists a

compact open set U such that K CU and z ¢ U.

The diagram in Fig. 9 illustrates the correspondence between categories of locally compact
and compactly based sober spaces. A complete overview of the categories of topological
spaces defined in this thesis can be found in Table 3.

LKSob ¢—— StLKSp <—— StKSp +—— KHaus

KBSob +—— StKBSp <——— Spec +——— Stone

Figure 9: Inclusion relationships between categories of locally compact and compactly based

sober spaces.

The dualities for continuous frames and their subcategories, including those of Hofmann—

Lawson and Isbell (see Theorem 7.7(1)), restrict to dualities for algebraic frames and com-
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pactly based spaces, along with their respective subcategories.

Theorem 11.10.
(1) AlgFrm is dually equivalent to KBSob.
(2) AriFrm is dually equivalent to StKBSp.
(3) CohFrm is dually equivalent to Spec.

(4) StoneFrm is dually equivalent to Stone.

One of the earliest references for Theorem 11.10 is [HIKX72, Thm. 5.7] (see also [GHIX 03,
p. 423]), which states the dualities for AlgFrm, AriFrm, and CohFrm. The duality for CohFrm
is also explored in [Bang0, Bang&1] and [Joh82, Sec. I1.3]. This restricts further to the duality
for StoneFrm (see, e.g., [Bang9] or [Jakl3, Ch. IV]).

We thus arrive at the diagram in Fig. 10.

AlgFrm <~~~ KBSob

AN

AriFrm ¢~~~y StKBSp

AN

CohFrm ¢~~~ Spec

N
AN

StoneFrm ¢~~~~~s Stone

Figure 10: Correspondence between categories of algebraic frames and compactly based

spaces.

Remark 11.11. It is straightforward to show that a continuous frame is algebraic iff its
space of points is compactly based. This observation, together with Theorem 7.7 and the
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fact that AlgFrm and KBSob are full subcategories of ConFrm and LKSob, respectively, yields
Theorem 11.10. However, a direct proof of Theorem 11.10 can be given without relying on
Theorem 7.7. This follows from the fact that every algebraic frame is spatial. Since coherent
frame homomorphisms correspond to coherent continuous maps, we can then restrict the
equivalence of Theorem 1.10 to algebraic frames and compactly based spaces.

We now sketch the argument that every algebraic frame is spatial. Let L be an algebraic
frame. Then Scott-open filters separate the elements of L. To see this, suppose a £ b. Then
there exists k € K(L) such that £ < a but k& € b. Therefore, 1k is a Scott-open filter such
that @ € Tk and b ¢ k. Finally, by the Prime Ideal Theorem, L is spatial iff Scott-open

filters separate its elements (see Corollary 6.9(2)).
12 Priestley spaces of algebraic frames

In this section, we characterize algebraic frames using Priestley spaces. We then relate
the Priestley duals of algebraic frames to compactly based sober spaces, leading to the above

duality between AlgFrm and KBSob (see Theorem 11.10(1)).

Definition 12.1. Let X be an L-space.
(1) ClopSUp(X) denotes the collection of all clopen Scott upsets of X.

(2) For U € ClopUp(X), define the algebraic part of U by
alglU = U{V € ClopSUp(X) | V C U}.

If U = ¢(a), we simply write alg(a) for algU.

(3) X is L-algebraic if alg is representative.
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Remark 12.2.
(1) The algebraic part of a clopen upset U is referred to as the core of U in [BN 25, BBM25].
(2) It follows immediately from the definition that alg is a kernel, hence the kernel-related

terminology in Definition 12.1(3) is justified.
We now establish the connection between algebraic frames and algebraic L-spaces.
Theorem 12.3. A frame L is algebraic iff its Priestley space X is L-algebraic.

Proof. Let a € L. By (1.3),
o (Vs)=alUels

for each S C L. Therefore, by Theorem 5.8(1), we have that a = \/{b € K(L) | b < a} iff

p(a) = cl|_J{e(b) € ClopSUP(X) | ¢(b) C ¢(a)} = clalg(a).
Thus, L is algebraic iff alg is representative. O

In Proposition 12.5, we establish several conditions equivalent to being L-algebraic in the

setting of continuous L-spaces. For this we require the following lemma.

Lemma 12.4. Let X be an L-space.
(1) alg < con.

(2) If X is L-algebraic, then alg = con and hence X is L-continuous.

Proof. (1) Suppose U € ClopUp(X) and = € algU. Then there exists V' € ClopSUp(X)
such that x € V. C U. Let W € OpUp(X) be such that U C clW. Then V C clW,
so V. C W by Lemma 5.2(3). Hence, V<« U. Therefore, x € conU, which implies that
algU C conU.

89



(2) By (1), it suffices to show that con < alg. Let U € ClopUp(X) and = € conU.
Then there exists V' € ClopUp(X) such that x € V <« U. Since alg is representative,
U = clalgU, and hence x € V C algU because V < U. Therefore, alg = con, and hence

con is representative, making X L-continuous. 0

Proposition 12.5. For a continuous L-space X, the following conditions are equivalent:
(1) con = alg.
(2) alg is representative.
(3) For each U € ClopUp(X) and every y € UNloc X, there exists V € ClopSUp(X) such
thaty e V CU.
(4) For each U € ClopUp(X) and every F € SUp(X) with FF C conU, there exists

V € ClopSUp(X) such that F CV CU.

Proof. (1)=-(2) Since X is L-continuous, con is representative. Therefore, (1) implies that
alg is representative.

(2)=-(3) Let U € ClopUp(X) and suppose that y € UNloc X. By (2), U = clalgU, which
implies that y € cl(algU) Nloc X. By Lemma 4.16(1), cl(algU) Nloc X = algU Nloc X.
Therefore, y € algU, and so there is V' € ClopSUp(X) such that y € V C U.

(3)=(4) Let U € ClopUp(X) and F' C conU be a Scott upset. Suppose y € F'Nloc X.
Then y € conU, so y € U. Therefore, by (3), there is V,, € ClopSUp(X) such that

y eV, CU. Thus,
F:U{Ty|y€FﬂlocX}§U{Vy]yGFﬂlocX}gU.

Because F' is closed, it is compact. Hence, since a finite union of clopen Scott upsets is a
clopen Scott upset, there exists V' € ClopSUp(X) such that FF CV C U.
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(4)=(1) By Lemma 12.4(1), alg < con. For the reverse inclusion, it suffices to show
that for all U,V € ClopUp(X), V < U implies that there is W € ClopSUp(X) with
V CW CU. Let V< U. By Proposition 8.13(2), there is a Scott upset F' such that
V CF CU. Since U = cl(conU), Lemma 5.2(3) yields that F' C conU. Therefore, by (4),

there exists W € ClopSUp(X) such that F C W C U, and hence VC W C U. ]

To extend the correspondence between algebraic L-spaces and algebraic frames to a cat-

egorical equivalence, we now examine morphisms between algebraic L-spaces.

Definition 12.6.

(1) An L-morphism f: X — Y between L-spaces is coherent if

f(algl) Calg fH(U) for all U € ClopUp(Y).

(2) Let AlgLPries be the category of algebraic L-spaces and coherent L-morphisms.

It is easy to see that the identity morphism is a coherent L-morphism and that the
composition of two coherent L-morphisms is coherent. Therefore, AlgLPries is well defined
as a category. To establish that AlglLPries is a full subcategory of ConlLPries, we first prove

the following:

Lemma 12.7. Let f: X — Y be an L-morphism between L-spaces.
(1) If f is proper and X is an algebraic L-space, then f is coherent.
(2) If f is coherent and Y is an algebraic L-space, then f is proper.

(3) If X and Y are algebraic L-spaces, then f is coherent iff f is proper.
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Proof. (1) Let U € ClopUp(Y'). Then

fHalglU) C f*(conl) by Lemma 12.4(1)
C con f1(U) since f is proper
=alg f1(U) by Lemma 12.4(2) and Proposition 12.5(1).

(2) Let U € ClopUp(Y'). Then

f(conlU) = f(algl) by Lemma 12.4(2) and Proposition 12.5(1)
Calg f1(U) since f is coherent
C con fHU) by Lemma 12.4(1).
(3) This follows from (1) and (2). O

We thus arrive at the following result:

Proposition 12.8. AlgLPries is a full subcategory of ConLPries.

Proof. Apply Lemmas 12.4(2) and 12.7(3). O

We now establish the first main result of this section: the dual equivalence between the

categories of algebraic frames and algebraic L-spaces.

Theorem 12.9. AlgFrm s dually equivalent to AlgLPries.

Proof. By Remark 11.2, AlgFrm is a full subcategory of ConFrm. By Proposition 12.8,
AlgLPries is a full subcategory of ConLPries. Thus, the result follows from Theorems 8.9

and 12.3. O
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Next, we establish the connection between AlgLPries and the category KBSob of compactly
based sober spaces. The following is a characterization of compact open sets of the localic
part of a spatial L-space. This result relies on Theorem 6.7, which established an analogue
of the Hofmann—-Mislove Theorem for Priestley spaces by relating Scott upsets of an L-space

to compact saturated sets of its localic part.

Proposition 12.10. Let X be a spatial L-space and U C X. Then U € ClopSUp(X)

iff there is a compact open set V' of loc X such that clV =U.

Proof. First, suppose that U € ClopSUp(X). Then V := U NlocX is a compact sat-
urated subset of loc X by Theorem 6.7. Moreover, V' is an open subset of loc X since
U € ClopUp(X). Furthermore, c1V = U because X is a spatial L-space (see Theorem 4.4).

Conversely, suppose there is a compact open set V' of loc X such that c1V = U. Then
TV is a Scott upset of X by Theorem 6.7. Since V' is open and X is a spatial L-space, there
is U" € ClopUp(X) such that V = U’ Nloc X and clV = U’ (see Theorem 4.4). Therefore,

U=clV =U’, and so U € ClopUp(X). Moreover,

U =10 =1V =4V =1V,

where the third equality follows from Lemma 3.4(4). Thus, U is a Scott upset. O

Theorem 12.11. Let X be an L-space. If X is L-algebraic, then loc X is a compactly based

sober space. If X is L-spatial, then the converse holds.

Proof. First, suppose that X is an algebraic L-space. Then loc X is sober by Proposition 4.14.

Let V Cloc X beopenand y € V. Set U :=clV. Then U € ClopUp(X) by Remark 4.10(2).
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Moreover, by Lemma 4.16(2),
UNlocX =clVNlocX =V,

soy € UNlocX. By Lemma 12.4(2) and Proposition 12.5(3), there is W € ClopSUp(X)

such that y € W C U. Therefore,
yeWnlocX CUNlocX =V,

where WNloc X is a compact open subset of loc X by Proposition 12.10 (L-algebraic implies
L-spatial by Proposition 8.14 and Lemma 12.4(2)). Thus, loc X is compactly based.
Conversely, suppose that X is L-spatial and loc X is compactly based. We will show
that alg is representative. Let U € ClopUp(X). Since compactly based spaces are locally
compact, X is L-continuous by Theorem 8.15. Therefore, by Proposition 12.5(3), it suffices
to show that for each y € U Nloc X there is V' € ClopSUp(X) such that y € V C U.
Because U Nloc X is an open subset of loc X and loc X is compactly based, there is a
compact open K C loc X such that y € K C U Nloc X. Therefore, cl K € ClopSUp(X) by

Proposition 12.10. Moreover, y € cl K C cl(U Nloc X) = U. Thus, X is L-algebraic. O

By Proposition 12.8, AlgLPries is a full subcategory of ConLPries. By Remark 11.9(2),
KBSob is a full subcategory of LKSob. Thus, as an immediate consequence of Theorems 8.20

and 12.11, we obtain the desired equivalence:

Corollary 12.12. AlglLPries is equivalent to KBSob.

13 Priestley spaces of arithmetic and coherent frames: Priestley revisited

In this section, we describe Priestley duals of arithmetic and coherent frames. These
L-spaces are distinguished by the stability of the kernel alg. We further establish their
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connections to stably compactly based and spectral spaces, leading to alternative proofs of

Theorem 11.10(2,3).

Definition 13.1.
(1) An algebraic L-space is L-arithmetic if alg is stable.

(2) Let AriLPries be the full subcategory of AlgLPries consisting of arithmetic L-spaces.

Remark 13.2. In [BM25], arithmetic L-spaces are alternatively defined as algebraic L-
spaces in which con is stable. This definition is equivalent to the one given above by Propo-

sition 13.3.

The following proposition gives alternative characterizations of arithmetic L-spaces.

Proposition 13.3. For an algebraic L-space X, the following conditions are equivalent:
(1) X is L-arithmetic.
(2) con is stable.
(3) SUp(X) is closed under binary intersections.

(4) ClopSUp(X) is closed under binary intersections.

Proof. (1)=-(2) This follows directly from Proposition 12.5(1).

(2)=-(3) This is given by Lemma 9.6(2).

(3)=-(4) This is immediate since ClopSUp(X) is a subset of SUp(X) and binary inter-
sections of clopens are clopen.

(4)=-(1) Suppose U;,U; € ClopUp(X). By Lemma 2.8(2), it suffices to show that for
each W € ClopUp(X), we have W C algU; NalglUs iff W C alg(U; NUs). Note that since

W is compact, W C algU; iff there exists V] € ClopSUp(X) such that W C V C algU;.
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Therefore, it follows from (4) that

W CalglU, NalglU,; <= 3V;, V5 € ClopSUp(X) : W CV; C Uy and W C Vy C Uy
—— 3V e ClopSUp(X) : W CV C U NUj

— W C alg(U1 N Ug) O

To connect arithmetic frames, arithmetic L-spaces, and stably compactly based spaces,

we need the following fact.

Lemma 13.4. Let X be a compactly based sober space. Then X is stably locally compact iff

X is stably compactly based.

Proof. The left-to-right implication is immediate. For the other implication, let A, B C X be
compact saturated. Since X is compactly based, each compact saturated set can be written

as an intersection of compact open sets (see Remark 11.9(2)). Thus, AN B = ()%, where

F={UnNV|U,V compact open with A C U and B C V}.

Because X is stably compactly based, F is down directed. Therefore, the Hofmann—Mislove
Theorem implies that (| F is compact (see, e.g., [GHIK 03, Cor. 1I-1.22]). Consequently,

AN B is compact. []

Theorem 13.5. For an algebraic frame L and its Priestley space X, the following conditions
are equivalent:

(1) L is an arithmetic frame.

(2) X is an arithmetic L-space.

(3) loc X is a stably compactly based space.
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Proof. By Theorem 12.3, L being algebraic implies that X is L-algebraic. Therefore, by
Theorem 12.11, loc X is a compactly based sober space.

(1)<(2) Assume L is an arithmetic frame and ¢(a), ¢(b) € ClopSUp(X). The latter
implies a,b € K(L) by Theorem 5.8(1). Since L is an arithmetic frame, a A b € K(L). It
follows that ¢(a) N p(b) = ¢(a A b) is a Scott upset, again by Theorem 5.8(1). Thus, X is
an arithmetic L-space by Proposition 13.3.

Conversely, let X be an arithmetic L-space and a,b € K(L). By Theorem 5.8(1),
o(a), p(b) are clopen Scott upsets. Therefore, by Proposition 13.3, ¢(a A b) = ¢(a) N ¢(b)
is a Scott upset. Thus, a A b € K(L), again by Theorem 5.8(1). Hence, L is an arithmetic
frame.

(2)<(3) Since X is L-algebraic (and hence L-continuous), X is L-arithmetic iff it is L-
stably continuous by Proposition 13.3. But X is a stably continuous L-space iff loc X is a
stably locally compact space by Theorem 9.7(1). Since loc X is a compactly based sober
space, loc X is stably locally compact iff it is stably compactly based by Lemma 13.4. Thus,

X is an arithmetic L-space iff loc X is a stably compactly based space. O

The following theorem establishes categorical equivalences between arithmetic L-spaces,

arithmetic frames, and stably compactly based spaces.

Theorem 13.6.
(1) AriLPries is dually equivalent to AriFrm.

(2) AriLPries is equivalent to StKBSp.

Proof. (1) follows from Theorems 12.9 and 13.5, while (2) from Corollary 12.12 and Theo-
rem 13.5 u
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This provides an alternative proof of the well-known duality for arithmetic frames (see

Theorem 11.10(2)):
Corollary 13.7. AriFrm is dually equivalent to StKBSp.

We now focus on the Priestley duals of coherent frames. Since coherent frames are
compact arithmetic frames, it follows that their Priestley duals are compact arithmetic L-
spaces (see Theorem 5.8(2)). We also establish a connection between compact arithmetic
L-spaces and spectral spaces, leading to the well-known duality between CohFrm and Spec

(see Theorem 11.10(3)).

Definition 13.8.
(1) A compact arithmetic L-space is called L-coherent.

(2) Let CohLPries denote the full subcategory of AriLPries consisting of coherent L-spaces.

Theorem 13.9. For an algebraic frame L and its Priestley space X, the following conditions
are equivalent:

(1) L is a coherent frame.

(2) X is a coherent L-space.

(3) loc X is a spectral space.

Proof. (1)<(2) L is coherent iff it is a compact arithmetic frame. By Theorems 5.8(2)
and 13.5, this holds iff X is L-coherent.
(2)<(3) By Lemma 5.12 and Theorem 13.5, X is L-coherent iff loc X is a compact stably

compactly based space, which is precisely a spectral space. O

The following corollary, obtained from Theorems 13.6 and 13.9, establishes the last result
of this section.
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Corollary 13.10.
(1) CohLPries is dually equivalent to CohFrm.

(2) CohLPries is equivalent to Spec.

To conclude this section, we highlight a connection to Priestley duality for bounded
distributive lattices. The equivalence of the categories DLat of bounded distributive lattices
and CohFrm of coherent frames (see Remark 6.4(1)) implies, via Theorem 13.10(1), that DLat
is dually equivalent to CohLPries. Moreover, by Theorem 13.10(2), CohLPries is equivalent
to Spec. By Theorem 2.17, Spec is isomorphic to Pries. This provides a new perspective on
Priestley duality through the framework of L-spaces (see the first row of Fig. 12 at the end

of the next section).
14 Priestley spaces of Stone frames: the unification of kernels

In the final section of this chapter, we characterize the Priestley duals of Stone frames.
A compact frame is Stone if it has sufficiently many complemented elements. From the
perspective of Priestley spaces, complemented elements correspond to clopen bisets (see,
e.g., [BGJ16, Lem 6.1]). Recall (see Section 10) that a biset is a subset that is both an upset

and a downset.

Definition 14.1. Let X be an L-space.
(1) Let ClopBi(X) denote the collection of clopen bisets of X.

(2) For U € ClopUp(X), define the zero-dimensional part of U by
zer U = | J{V € ClopBi(X) | V C U}.

(3) An L-space is L-zero-dimensional if zer is representative.
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(4) An L-space is L-Stone if it is both L-compact and L-zero-dimensional.

(5) Let StoneLPries be the full subcategory of LPries consisting of Stone L-spaces.

Remark 14.2.
(1) The zero-dimensional part of a clopen upset U is referred to as the biregular part in
[BGJ16], and as the center in [BM25].
(2) It follows immediately from the definition that zer is a kernel, hence the kernel-related

terminology in Definition 14.1(3) is justified.

Lemma 14.3. Let X be an L-space.
(1) zer is a kernel.
(2) zer < reg.
(3) If X is L-zero-dimensional, then X is L-reqular.

(4) If X is a Stone L-space, then X is a compact regular L-space.

Proof. (1) This follows directly from the definition of the zero-dimensional part.

(2) Suppose © € zerU. Then there exists V € ClopBi(X) such that z € V C U.
Therefore, |12 C U, which implies x € regU by Lemma 10.4(1).

(3) Suppose X is L-zero-dimensional. Since zer is representative and zer < reg by (2),
it follows that reg is representative by (2), making X L-regular.

(4) Since X is L-compact, it follows from (3) that X is a compact regular L-space. [

This immediately yields the following result:
Proposition 14.4. StonelPries is a full subcategory of KRLPries.

Next, we show that StonelLPries is also a full subcategory of CohLPries. For this we
establish that the four kernels we considered all coincide in the setting of Stone L-spaces. We
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first require the L-space analogue of the result that each compact saturated set in a compactly

based space is the intersection of the compact open sets containing it (see Remark 11.9(2)):

Lemma 14.5. Let X be an algebraic L-space and F C X a Scott upset. Then
F =V €ClopSUp(X) | F C V}.

Proof. Since F'is a closed upset, F' = ({U € ClopUp(X) | F C U} by Lemma 2.8(3). Thus,
it is enough to show that for each U € ClopUp(X) with F' C U, there exists V' € ClopSUp(X)
such that F* C V C U. Since alg is representative, U = clalgU, so F' C U implies that

F CalgU by Lemma 5.2(3). By compactness, we obtain the desired V. O

Theorem 14.6. Let X be a Stone L-space.
(1) ClopSUp(X) = ClopBi(X).

(2) zer = reg = alg = con.

Proof. (1) Since X is a Stone L-space, it follows from Lemma 14.3(4) that it is a compact
regular L-space. Therefore, by Lemma 10.15(4), Scott upsets coincide with closed bisets,
proving the claim.

(2) The inclusion zer < reg follows from Lemma 14.3(2), while alg < con follows from
Lemma 12.4(1). Thus, it remains to show that reg < alg and con < zer. We begin
by proving that reg < alg. Suppose U € ClopUp(X) and let x € regU. Then there is
V € ClopUp(X) such that z € V and |V C U. Hence, 1]z C U. Since X is L-compact,
min({z) € min X C loc X, and so ]z is a Scott upset because it is closed. Since X is
L-algebraic, alg is representative, so clalglU = U. Thus, T}z C algU by Lemma 5.2(3),

which implies that z € algU. Consequently, reg < alg.
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To complete the proof, we show that con < zer. It suffices to show that for all

U,V € ClopUp(X), if V C conU then V C zer U. Observe that

VCconlU = VU by Lemma 8.4(2)
— JFeSUpX): VCFCU by Proposition 8.13(2)
—> JW € ClopSUp(X): VCW CU by Lemma 14.5
— JdW € ClopBi(X): VCW CU by (1)

— V CzerU,

where the third implication follows from Proposition 13.3(4) since X is compact. O]

Corollary 14.7. StonelPries is a full subcategory of CohLPries.

Proof. By Theorem 14.6(2), every Stone L-space is a coherent L-space. Furthermore, since
Stonel Pries is a full subcategory of KRLPries, every L-morphism between Stone L-spaces is a
proper L-morphism by Proposition 10.18(2). Therefore, every such morphism is also a coher-

ent L-morphism by Lemma 12.7(3). Thus, StoneLPries is a full subcategory of CohLPries. [J

[BGJ16, Thm. 6.3(1)] establishes that Priestley duals of zero-dimensional frames are
precisely zero-dimensional L-spaces. We establish a connection between zero-dimensional

L-spaces and zero-dimensional topological spaces.

Lemma 14.8. Let X be an L-space.
(1) If U € ClopBi(X), then U Nloc X is a clopen subset of loc X .
(2) If X is L-spatial and V C loc X is clopen, then there exists U € ClopBi(X) such that

V=UnNlocX.
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Proof. (1) This follows directly from the definition of the topology on loc X (see Defini-
tion 4.8).

(2) Let V' C loc X be clopen. Since V is open, there exists U € ClopUp(X) such that
V =UnNlocX and clV = U (see Theorem 4.4). Similarly, since V' is closed, there exists
W € ClopUp(X) such that loc X \ V = Wnloc X and cl(loc X \ V') = W. Since V,loc X \V

are open in loc X, we have

UNW=cVnc(locX\V)=c(VN(locX\V)) =2

by Lemma 4.16(3). Moreover, by Theorem 4.4,

UUW =clVUcllocX\V)=cl(VU(locX\V))=cllocX = X.

Thus, U = X \ W, implying that U € ClopBi(X). O

Proposition 14.9. Let X be an L-space. If X is L-zero-dimensional, then loc X is zero-

dimensional. If in addition X is L-spatial, then the converse holds.

Proof. First, suppose X is L-zero-dimensional. Let V C loc X be open and y € V. Then
there exists U € ClopUp(X) such that U Nloc X = V. Since zer is representative, it follows
that

UNlocX =cl(zerU) Nloc X = zerU Nloc X,

where the last equality follows from Lemma 4.16(1) because zer U is an open upset of X.
Therefore, there exists W € ClopBi(X) such that y € W C U. Thus, y € WNlocX CV
and W Nloc X is clopen in loc X by Lemma 14.8(1). Hence, loc X is zero-dimensional.
Conversely, suppose that X is L-spatial, loc X is zero-dimensional, and U € ClopUp(X).
Since X is L-spatial, U Nloc X is dense in U (see Theorem 4.4). Therefore, it suffices to show
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that U Nloc X C zerU. Let y € UNloc X. Since U € ClopUp(X), we have that U Nloc X
is open in loc X. Because loc X is zero-dimensional, there exists a clopen set V' C loc X such
that y € V C U NlocX. Since V is clopen in loc X, Lemma 14.8(2) implies that there is
W € ClopBi(X) such that V=W Nloc X. Because X is L-spatial, we have clV = W so

ye W CU. Thus, y € zerU. O]

Theorem 14.10. For a spatial frame L and its Priestley space X, the following conditions
are equivalent:

(1) L is a zero-dimensional frame.

(2) X is a zero-dimensional L-space.
If in addition L is spatial, then (1) and (2) are equivalent to

(3) loc X is a zero-dimensional space.

Proof. The equivalence (1)< (2) follows from [BGJ16, Thm. 6.3(1)]. For completeness, we

provide a proof. Let a € L. Since b € C(L) iff p(b) € ClopBi(X),

a=\{be ) [b<al < wla) = d{ () € ClopBi(X) | 9(5) € pla)}

< p(a) = clzer(a)

by (1.3). Therefore, L is zero-dimensional iff zer is representative.

(2)<(3) This follows from Proposition 14.9. O

Corollary 14.11. Let L be a frame and X its Priestley space.
(1) L is a Stone frame.
(2) X is a Stone L-space.

If in addition L is spatial, then (1) and (2) are equivalent to
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(3) loc X is a Stone space.

Proof. (1)<(2) This follows from Theorems 5.8(2) and 14.10.

(2)<(3) This follows from Lemma 5.12 and Theorem 14.10. O

As an immediate consequence, we arrive at the final results of this section.

Corollary 14.12.
(1) StonelLPries is dually equivalent to StoneFrm.

(2) StonelPries is equivalent to Stone.

Proof. These results follow from Corollaries 13.10 and 14.11 and the fact that StoneFrm,
StonelPries, and Stone are full subcategories of CohFrm, CohLPries, and Spec, respectively

(see Remark 11.7, Corollary 14.7, and Remark 2.15). O

This provides an alternative proof of the well-known duality for Stone frames (see The-

orem 11.10(4)).

Corollary 14.13. StoneFrm is dually equivalent to Stone.

To summarize, the diagram in Fig. 11 presents the established equivalences, using the
same notation as in previous diagrams. Table 1 provides an overview of all the introduced
categories of Priestley spaces in this thesis. The corresponding categories of frames and

spaces are summarized in Tables 2 and 3.

105



AlgFrm ¢t AlgLPries «+— = KBSob

A A

J J

AriFrm S ArilPries «—% StKBSp
CohFrm S CohLPries PG RN Spec

AN AN A

J J

N 14.12(1 . 14.12(2
StoneFrm «vm/w(v)v» StonelPries A Stone

Figure 11: Equivalences and dual equivalences among categories of algebraic frames, alge-

braic L-spaces, and compactly based sober spaces.

At the end of Section 13, we described how our framework yields a new perspective
on Priestley duality for bounded distributive lattices. Since the equivalence of DLat and
CohFrm restricts to an equivalence between BA and StoneFrm (see, e.g., [Ban&9, p. 258]), we

also obtain a new view on Stone duality for Boolean algebras (see the second row of Fig. 12):

Priestley duahtyg DLat «+——— CohFrm ¢~~~y CohLPries «+——— Spec = Pries

Stone duality | BA «———— StoneFrm ¢~~~ StonelPries «——— Stone

Figure 12: Priestley and Stone dualities revisited through the dual equivalence of the cate-

gories of coherent frames and coherent L-spaces.

We now examine how the topology of the corresponding Priestley space or Stone space
emerges in the L-space. (For this it is useful to review the notation introduced in Re-

mark 2.18.)

Remark 14.14.

(1) By the equivalence between DLat and CohFrm, every bounded distributive lattice D is
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isomorphic to the lattice K(L) of compact elements of a coherent frame L. Let X be
the Priestley space of L, and Y the Priestley space of D. Identifying D with K(L), the
map P — PN D establishes an isomorphism between (loc X, C) and (Y, C). However,
the topology my of YV is different from the subspace topology m..x on loc X induced
from mx. Indeed, the topology of Y is the patch topology 7y of the upper topology
Ty . Identifying Y with loc X, we obtain ¢p(a) = ¢r(a) Nloc X for each a € D. Since

ClopSUp(X) corresponds to D (see Theorem 5.8(1)), 7y is generated by the basis

{(U\V)NlocX | U,V € ClopSUp(X)}.

Thus, 7y is the patch topology of the subspace topology Ti,e x on loc X induced by the
upper topology 7x. Next, we show that this topology may differ from the subspace
topology induced by 7.

(2) If D is a Boolean algebra, then D is isomorphic to C(L) = K(L) for some Stone frame
L (see, e.g., [Bang9, p. 258]). Again, let X be the Priestley space of L and Y the
Stone space of D. In this case, the upper topology 7 and its patch topology my
coincide. Therefore, identifying Y = loc X, we have my = 7y = Tjocx (see above).
Moreover, since each Stone frame is a compact regular frame, we have loc X = min X
(see Lemma 10.15(5)). Thus, loc X coincides with the set of isolated points of X,
implying that m,. x is discrete. This demonstrates that the restrictions of mx and 7x
to loc X are distinct, showing that the operations of taking the patch topology and

subspace topology may not commute.

We conclude the chapter with several remarks clarifying the role of kernels in our frame-
work. Kernels capture essential properties of frames and provide a unifying perspective on
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the duality results presented.
Remark 14.15. The strength of different frame properties can be understood through the
way their associated kernels relate. For example, alg < con (see Lemma 12.4(1)) shows
that every algebraic frame is continuous. Similarly, zer < reg (see Lemma 14.3(2)) implies
that every zero-dimensional frame is regular. In addition, we saw that L-compactness yields
reg < con (see Lemma 10.14(1)), while L-regularity implies con < reg (see Lemma 10.14(2)).
Similarly, it can be shown that L-compactness ensures zer < alg, while L-zero-dimensionality

implies alg < zer. As a consequence, for Stone L-spaces, con, reg, alg, and zer coincide

Fig. 13 depicts the relationships between different kernels and the

(see Theorem 14.6(2)).
conditions that force them to relate to each other. In the diagram, f —— ¢ stands for

» g for f < g provided X is [.
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Remark 14.16. Given a frame L and its Priestley space X, we have:
e [ is continuous iff con is representative (see Theorem 8.6).
e [ is algebraic iff alg is representative (see Theorem 12.3).
e [ is regular iff reg is representative (see Theorem 10.8(1)).
e [ is zero-dimensional iff zer is representative (see Theorem 14.10).
We next outline how spatiality can also be characterized in terms of a kernel. Let X be an

L-space. Define a map spa: ClopUp(X) — OpUp(X) by
spall = | J{V € ClopUp(X) | V C cl(U nloc X)}.

It is straightforward to verify that spa is a kernel. Moreover, spa is representative iff X
is L-spatial. To see this, suppose spa is representative and U € ClopUp(X). Clearly,
spalU C cl(UNlocX), so U = clspalU C cl(U Nloc X) since spa is representative. There-
fore, U = cl(U Nloc X), so X is L-spatial by Theorem 4.4. Conversely, if X is L-spatial,
then U C cl(U Nloc X) since loc X is dense. Thus, U C clspaU, showing that spa is

representative.
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Chapter V

Conclusion

In this thesis, we have explored the relationship between Priestley duality and pointfree
topology, focusing on the structure of frames via their associated Priestley spaces. This
perspective allowed us to derive fundamental results, including the Hofmann—Mislove The-
orem, as well as key dualities such as Hofmann—Lawson, Isbell, and Stone. In this chapter,
we summarize these findings by presenting useful tables and diagrams that illustrate the
relationships between the various categories considered throughout the thesis. Finally, we
outline some applications of this framework and directions for future research.

Throughout this thesis, we have introduced and studied various new categories of Priest-
ley spaces. Table 1 provides an overview of these categories along with references to their
corresponding definitions. These categories serve as a foundation for our framework and can
play a crucial role in understanding the structure of frames in pointfree topology.

While some of these Priestley spaces have appeared in previous work, their categories were
not rigorously described previously. For example, the Priestley spaces of compact regular
frames were characterized in [P588] (see also [BGJ16]), and those of spatial and continuous
frames have been studied in [PS00] (see also [ABNZ20] for spatial frames). In contrast,
other categories listed in Table 1 are completely new and have not been explicitly considered
before. Although we have not treated them as a separate category, we have described the
Priestley spaces of zero-dimensional frames (see [3(:J16] for an earlier work in this direction).

Fig. 14 illustrates the hierarchical structure of the categories of Priestley spaces intro-
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Category Objects (Definition) Morphisms (Definition)

Pries Priestley spaces (2.1) Priestley morphisms (2.3)
LPries L-spaces (3.1) L-morphisms (3.1)
SLPries spatial L-spaces (4.5) L-morphisms

KLPries compact L-spaces (5.10) L-morphisms

KSLPries compact spatial L-spaces L-morphisms

ConLPries  continuous L-spaces (8.8) proper L-morphisms (8.8)

StCLPries stably continuous L-spaces (9.2) proper L-morphisms
StKLPries stably compact L-spaces (9.2) proper L-morphisms

KRLPries compact regular L-spaces (10.7) L-morphisms

AlgLPries algebraic L-spaces (12.1) coherent L-morphisms (12.6)
AriLPries arithmetic L-spaces (13.1) coherent L-morphisms
CohLPries  coherent L-spaces (13.8) coherent L-morphisms
StonelLPries Stone L-spaces (14.1) L-morphisms

Table 1: Categories of Priestley spaces

Pries

™

not full |
J

LPries «———— KLPries

J I

SLPries +——— KSLPries

A A

not full | |

J |

AlglLPries —— ConLPries /

A N h

AriLPries ————— StCLPries oS

A A

CohLPries ——— StKLPries «<---"

AN AN

J

J

StonelLPries ———— KRLPries

Figure 14: Relationships between categories of Priestley spaces.
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frames.

duced in this thesis. In the diagram, A —— B denotes that A is a full subcategory of B,
while A €23 B indicates that A is a subcategory of B but not a full subcategory.
Having introduced the new categories of Priestley spaces, we now turn to their role
in providing proofs of dualities in pointfree topology. Fig. 15 illustrates these dualities,
showing equivalences between categories of Priestley spaces, frames, and topological spaces.
The diagram captures the key duality results of this thesis. In particular, the Hofmann—
Lawson and Isbell dualities, which were the focus of Chapter III, and the Stone dualities,
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which were discussed in Chapter [V, are highlighted. These equivalences underscore the
broader usefulness of the framework developed in this thesis. The notation follows previous
diagrams, with equivalences and dual equivalences explicitly indicated.

To complement Fig. 15, we also provide a tabular overview of the relevant categories of
frames and topological spaces in Tables 2 and 3, respectively. These tables list the objects
and morphisms that define each category and refer to the definitions where they can be
found.

Priestley duality provides a powerful framework for studying frames and their associated
topological spaces. Beyond its role in duality theory, it has proven to be a useful tool in
several areas of pointfree topology and lattice theory, as mentioned in the introduction. We
conclude the thesis by highlighting some key applications, as well as new ideas arising from

this work.

Nuclei, sublocales, and the assembly frame

Nuclei, which correspond to sublocales in pointfree topology, have been characterized
via Priestley duality (see [BG07]). While this perspective has been useful in understanding
the assembly frame (see, e.g., [ABMZ20, ABMZ21]) and studying certain nuclei (see, e.g.,
[BBM25]), much remains to be explored. An open question concerns the Priestley space of
the assembly frame (the frame of nuclei):

Given an L-space X, describe the Priestley space of the assembly frame (intrinsically as
a construct of X).

A clearer understanding of this could shed light on Isbell’s famous open problem (see

[[sb72, Ish91]), which asks to characterize assembly frames intrinsically.
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Category Objects (Definition) Morphisms (Definition)
Frm frames (1.1) frame homomorphisms (1.4)
SFrm spatial frames (1.3) frame homomorphisms
KFrm compact frames (5.5) frame homomorphisms
KSFrm compact spatial frames frame homomorphisms
ConFrm continuous frames (7.1) proper frame homomorphisms (7.2)
StCFrm stably continuous frames (7.3) proper frame homomorphisms
StKFrm stably compact frames (7.3) proper frame homomorphisms
KRFrm compact regular frames (7.3)  frame homomorphisms
AlgFrm algebraic frames (11.1) coherent frame homomorphisms (11.1)
AriFrm arithmetic frames (11.3) coherent frame homomorphisms
CohFrm coherent frames (11.5) coherent frame homomorphisms
StoneFrm  Stone frames (11.6) frame homomorphisms

Table 2: Categories of frames
Category Objects (Definition) Morphisms (Definition)
Top topological spaces continuous maps
Sob sober spaces (1.8) continuous maps
KSob compact sober spaces continuous maps
LKSob locally compact sober spaces (7.4) proper continuous maps (7.4)
StLKSp stably locally compact spaces (7.5) proper continuous maps
StKSp stably compact spaces (7.5) proper continuous maps
KHaus compact Hausdorff spaces (7.5) continuous maps
KBSob compactly based sober spaces (11.8)  coherent continuous maps (11.8)
StKBSp stably compactly based spaces (11.8) coherent continuous maps
Spec spectral spaces (2.12) coherent continuous maps
Stone Stone spaces (2.6) continuous maps

Table 3: Categories of topological spaces
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Finding counterexamples via duality

In frame theory and certain generalizations, such as MT-algebras (see [BR23, BR25]) and
Raney extensions (see [Sua24]), Priestley duality offers an effective method for constructing
counterexamples. Working in the dual order-topological setting often allows for simpler and
more intuitive ways of constructing counterexamples, which would be difficult to produce
algebraically. This approach has the potential to resolve open problems in these settings by
systematically translating algebraic conditions into topological ones. A concrete application
of this idea was demonstrated in [BBM25] to construct a counterexample that resolved an

open problem posed in [Bhal9].

Studying spectra of frames through Priestley duality

The various spectra of frames can often be understood through their associated Priestley
spaces. In this thesis, we observed that the point spectrum (pt) of a frame naturally appears
as the localic part of its Priestley space. This provides a new way to analyze prime elements,
maximal and minimal primes, and other spectral structures in a dual setting. For example,
the counterexample produced in [BBN25] was obtained by characterizing the spectrum of
maximal d-elements in terms of L-spaces. Building on these methods, additional natural
spectra and their dual descriptions will be explored, extending the scope of Priestley duality

in pointfree topology.
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Object Collection Description Page
Priestley /L-space X ClopUp(X)  clopen upsets 12
ClopDn(X)  clopen downsets 13
min X minimal points 14
max X maximal points 14
ClUp(X) closed upsets 14
OpUp(X) open upsets 16
loc X localic points 21
SUp(X) Scott upsets 32
ClopSUp(X) clopen Scott upsets 88
ClopBi(X)  clopen bisets 99
Lattice/Frame L pt(L) completely prime filters 8
Filt(L) filters 14
OFilt(L) Scott-open filters 38
K(L) compact elements 83
C(L) complemented elements 83
Topological space Y Q(Y) open sets 7
KSat(Y) compact saturated sets 38

Table 4: The notation used throughout the text.
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