
Priestley Duality for d-Frames

Guram Bezhanishvili & Sebastian Melzer

New Mexico State University

October 24, 2023 (El 56 Congreso de la Sociedad Matemática Mexicana: ITAC)



Pointfree topology

A frame (or locale) is a complete lattice whose finite meets distribute over arbitrary
joins.

Frames are used to study topological spaces via their lattices of open sets. Indeed,
the lattice of open sets of each topological space is a frame.

This allows us to study spaces without points, hence the name pointfree topology.
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Nuclei

The pointfree analogue of a subspace is a sublocale.

A subset of a frame is a sublocale if the left adjoint of the inclusion map is a
nucleus: a closure operator that commutes with finite meets.

For each nucleus j : L → L, the set jL = {a ∈ L : j(a) = a} is the corresponding
sublocale.
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Algebraic lattices

A complete lattice is algebraic if each element is the join of the compact elements
below it.

As the name suggests, algebraic lattices have their origin in algebra:

The lattice of congruences of any algebra is algebraic.
The lattice of subuniverses of any algebra is algebraic.

If an algebraic lattice is distributive, it is a frame.
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Algebraic frames
There are several important categories of algebraic frames.

An arithmetic frame is an algebraic frame where binary meets of compact
elements are compact.

A coherent frame is an arithmetic frame that in addition is compact.

A frame homomorphism is coherent if it maps compact elements to compact
elements.

We consider the following categories of algebraic frames.

AlgFrm – algebraic frames and coherent frame homomorphisms

AriFrm – full subcategory of arithmetic frames

CohFrm – full subcategory of coherent frames
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Compactly based spaces

There is a well-known dual equivalence between the categories Sob of sober
spaces and SFrm of spatial frames.

This restricts to a dual equivalence between AlgFrm and the category KBSob of
compactly based sober spaces and coherent continuous maps.

A space is compactly based if it has a basis of compact sets.
A continuous map is coherent if the inverse image of a compact open set is
compact.

Theorem (Hofmann and Keimel, 1972)

AlgFrm and KBSob are dually equivalent.
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Restricting further to the categories of arithmetic and coherent frames yields the
following dualities

AlgFrm AriFrm CohFrm

KBSob SKBSob Spec

⩾ ⩾

⩾ ⩾

where we have the following full subcategories of KBSob:

SKBSob – stably compactly based sober spaces
(binary intersection of compact opens is compact)

Spec – spectral spaces
(stably compactly based + compact)
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d-nucleus

Let L be an arithmetic frame. Define d : L → L by

d(a) =
∨

{k∗∗ | k is compact and k ⩽ a}.

Lemma (Martinez and Zenk, 2003)

1. d is a nucleus.
2. d(0) = 0, i.e., d is dense.
3. d(a) =

∨
{d(k) | k ∈ K(L), k ⩽ a}, i.e., d is inductive.

4. d is the greatest dense and inductive nucleus on L.
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Motivation

Martinez and Zenk introduced the d-nucleus as a frame-theoretic tool to study
d-ideals.

The study of d-ideals was started in the 1970s/80s by several authors, e.g., Bernau;
Luxemburg; Bondarev; Bigard, Keimel, and Wolfenstein; Huĳsmans and de Pagter.

d-ideals have become an important object of study in the setting of ℓ-groups.

In this talk, we use the machinery of Priestley spaces to provide a new perspective
on the study of the d-nucleus. We hope that this will shed new light on some open
problems in the area.
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Priestley duality

A Priestley space is a partially ordered compact space with the property that if
x ̸⩽ y then x can be separated from y by a clopen upset.

Theorem (Priestley, 1970)

DLat and Pries are dually equivalent.

where

DLat is the category of bounded distributive lattices and their homomorphisms

Pries is the category of Priestley spaces and order-preserving continuous maps
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Pultr-Sichler duality
Since frames are bounded distributive lattices, there is a class of Priestley spaces
corresponding to frames.

An Esakia space is a Priestley space such the downset of each clopen is clopen.
An Esakia space is extremally order-disconnected if the closure of each open
upset is clopen.
An L-space (localic space) is an extremally order-disconnected Esakia space.
An L-morphism is an order-preserving continuous map f such that
cl f−1(U) = f−1(cl U) for each open upset U.

Let LPries be the category of L-spaces and L-morphisms.

Theorem (Pultr and Sichler, 1988)

Frm and LPries are dually equivalent.
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Priestley duality for spatial frames

Definition

Let X be an L-space.
The localic part of X is Y := {y ∈ X | ↓y is clopen}.
A closed upset F ⊆ X is a Scott upset if min F ⊆ Y.
X is an SL-space if every clopen upset is the closure of the Scott upsets
it contains. (Equivalently, Y is dense in X)

Let SLPries be the full subcategory of LPries consisting of SL-spaces.

Theorem

SFrm and SLPries are dually equivalent.
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Priestley duality for algebraic frames
Definition

Let X,X ′ be L-spaces.
Let ClopSUp(X) be the collection of clopen Scott upsets of X.
For a clopen upset U ⊆ X, the core of U is

core U =
⋃

{V ∈ ClopSUp(X) | V ⊆ U}.

X is algebraic if core U is dense in U for each clopen upset U ⊆ X.
An L-morphism f : X → X ′ is coherent if f−1(core U) ⊆ core f−1(U).

Let AlgLPries be the category of algebraic L-spaces and coherent L-morphisms.
Theorem

AlgFrm and AlgLPries are dually equivalent.
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Priestley duality for arithmetic/coherent frames

Definition

An arithmetic L-space is an algebraic L-space such that
core U ∩ core V = core(U ∩ V) for all clopen upsets U,V ⊆ X.
An L-space X is L-compact if min X ⊆ Y.
A coherent L-space is an arithmetic L-space that is also L-compact.

Let AriLPries and CohLPries be the corresponding full subcategories of AlgLPries.
Theorem

1. AriFrm and AriLPries are dually equivalent.
2. CohFrm and CohLPries are dually equivalent.
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Nuclear subsets

Let L be a frame and X its Priestley space.

Definition

A closed set N ⊆ X is nuclear if ↓(U ∩ N) is clopen for each clopen U ⊆ X.

Theorem (Bezhanishvili and Ghilardi, 2007)

There is a one-to-one correspondence between nuclei of L and nuclear subsets of X.

If we write Nj for the nuclear subset corresponding to a nucleus j : L → L, then Nj
is the Priestley space of jL.
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Nd and Yd

Let L be a frame, X its Priestley space, Y the localic part of X, and j ∈ N(L).

Lemma

1. Yj := Nj ∩ Y is the localic part of Nj.
2. Nd = cl(Yd).
3. max Y ⊆ Yd (and this inclusion can be strict).

Theorem

For y ∈ Y, the following are equivalent.
1. y ∈ Yd.
2. max ↑y ⊆ V implies y ∈ V for all V ∈ ClopSUp(X).
3. there is x ∈ max X such that y = max(↓x ∩ Y).
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Example max Y ⊊ Yd

Let X =
0 1 2

y

. . .
N∗

Y = N ∪ {y}
max Y = N
Yd = Y
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Maximal d-elements

The collection of maximal d-ideals equipped with the hull-kernel topology has
been studied extensively.

The frame-theoretic analogue of this is the space max dL of maximal d-elements
(see Bhattacharjee, 2019).

It is an open question whether max dL is always Hausdorff.

We hope our machinery will be useful to answer this question.

Lemma

min Yd is homeomorphic to max dL.
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0 1 2
. . .

N∗

Y = N = Yd = min Yd
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y ′ y

. . .
N∗

. . .
(Z<0)

∗

Y = Z ∪ {y, y ′} = Yd

min Yd = {y, y ′}
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What we know about min Yd

Let X be an arithmetic L-space.

Lemma

1. min Yd is a locally compact T1-space.
2. min Yd is compact iff there is U ∈ ClopSUp(X) with max X ⊆ V.
3. min Yd is Hausdorff iff min Yd is sober.

Lemma

Let X be the Priestley space of a regular arithmetic frame. Then Y ⊆ min X, and
hence min Yd = Y = max Y is locally Stone (locally compact, Hausdorff, and zero-
dimensional).
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Thank you!

¡Gracias!


